- 博客(20)
- 资源 (2)
- 收藏
- 关注
原创 白嫖,深度学习利器Google Cloab
当下最火的领域莫过于人工智能了,不管是深度学习、大数据等都立足于庞大的数据,这就导致对算力要求较高,换一句话说就是对GPU要求高。然后对很多人而言,电脑配置是达不到要求的,特别是对广大学生党而言。但是有了Google Cloab,问题就简单许多。只需要一个能上网的电脑和一个谷歌账号就能跑模型了。下面就来介绍一下1. 基本操作...
2020-07-11 13:30:55 3049 1
原创 Ubuntu18.04构建语音识别工具Kaldi并跑通整个TIMIT数据集(包含使用GPU的DNN)
语音识别工具应用最广泛的当属Kaldi了。
2020-04-10 13:49:05 1270
原创 windows10下安装、配置vim及YCM安装
久仰vim大名,最近出于好奇,折腾了一下,在此记录一下历程。在win10下配置比Ubuntu下难,所以先记录win10下的配置。文章目录1. windows10下的vim1.1 安装vim1. windows10下的vim 首先我的机器安装的windows10,64位。1.1 安装vim 去官网下载windows下的.exe可执行文件,进行安装。补全神器YCM(YouComplet...
2020-04-07 13:38:10 2746 5
原创 戴尔笔记本Windows10安装Ubuntu18.04实现双系统总结
最近出于需要,在笔记本上折腾了个Ubuntu18.04,由于以前没接触过Linux系统,在此记录一下历程。首先我电脑是戴尔的G3笔记本,一块512G的固态,操作系统win10 64位。下面开始折腾了。文章目录1. 准备工作1. 准备工作 第一步制作一个启动盘,需要材料:空U盘一个(如果U盘有资料,在制作过程会被格式化,注意备份好资料),在win10上安装UltraISO(软碟通)软件(...
2020-03-24 16:47:47 9385 13
原创 C语言系列7——文件I/O、C预处理器
文章目录1.文件1.文件 文件通常是在磁盘或固态硬盘上的一段已命名的存储区,可以存储程序、文档、数据、书信、图片、视频等等信息。有时,程序需要从文件中读取信息或者把信息写入文件,这种程序与文件交互的形式就是文件的重定向。C把文件看作是一系列连续的字节,每个字节都能被单独读取。C提供两种文件模式:文本模式和二进制模式。...
2020-03-07 10:24:05 341
原创 C语言系列6——存储类型、作用域和位运算
文章目录1. 存储类别1. 存储类别 C提供了多种不同的模型或存储类别(storage class)在内存中存储数据。从硬件方面来看,被储存的每个值都占用一定的物理内存,C语言把这样的一块内存称为对象(object)。...
2020-03-06 10:22:34 333
原创 C语言系列5——指针、结构和其它数据类型
文章目录 指针是C语言中最复杂的,没有之一。从根本上看,指针(pointer)是一个值为内存地址的变量(或数据对象)。正如char类型变量的值是字符,int类型变量的值是地址,指针变量的值是地址。...
2020-03-05 09:49:48 432
原创 C语言系列1——综述
终于把CPrimerPlus刷完了,在此总结一下C的基础知识点,方便日后查阅学习。本文章可自由转载。目录:文章目录1. 初识C语言2.C基础2.1编译器和编辑器2.2 安装编译器2.3 MinGw和VScode搭建C环境2.4 MinGw和notepad++搭建C环境2.5 Visual Studio201X1. 初识C语言 C语言是贝尔实验室的丹尼斯·里奇(Dennis Ritch)和...
2020-03-01 09:17:44 725
原创 语音识别基础(一)——语音信号的产生和特性
最近在看到语音识别的基础部分,了解了语音信号的产生原理和模型,在此记录以下,方便以后查找复习。目录:1. 综述 语音是在说话人和听者之间互相传递的信息,传递的媒介是声波。说话人的发音器官做出发声动作,接着空气振动形成声波,声波传到听者的耳朵里,立即引起听者的听觉反应,语音的传递就是这样一个过程。其中,发音动作属于生理现象,空气振动属于物理现象,而听觉反应属于心理现象。 从语音传递过程来...
2019-12-29 22:45:48 5299
原创 jupyter notebook使用虚拟环境
在使用jupyter notebook的过程中,一直没搞明白怎么在jupyter notebook中使用Anaconda虚拟环境,碰过很多次壁。在此,结合网络上的资料与自己踩过的坑,总结一下,希望对大家有帮助。我用的是64为Windows系统,Anaconda已加入系统环境变量(不加入不好操作)。1.创建虚拟环境 Anaconda创建虚拟环境的语句:conda create -n nam...
2019-10-24 22:50:52 1623
原创 台大李宏毅Machine Learning学习笔记(七)——深度学习(Deep Learning)简介
深度学习发展历程图1 深度学习发展历程图2 深度学习的步骤 深度学习的三个步骤和前面机器学习几乎一样,讲起来比较简单,就像把大象放进冰箱的三个步骤一样:第一步打开门;第二步把大象放进去;第三步关门。但是做起来会遇到各种各样的问题。 第一步里面的函数其实就是神经网络,在上一讲的最后说过,神经网络其实就是逻辑回归单元的级联,图3 神经网络 神经元之间连接方式需要人工拟定,最常见的方式...
2019-07-31 15:23:25 462
原创 台大李宏毅Machine Learning学习笔记(六)——逻辑回归(Logistic Regression)
在分类里面我们得到了函数(1)σ(z)=1(1+exp(−z))\sigma(z)=\frac1{(1+exp(-z))}\tag1σ(z)=(1+exp(−z))1(1)称之为逻辑函数(Logistic function),也称为Sigmoid函数。图1 逻辑函数 先把线性特征求和,再代入该函数,得到(2)fw,b=σ(∑iwixi+b)f_{w,b}=\sigma(\sum_iw_ix...
2019-07-30 21:51:38 196
原创 台大李宏毅Machine Learning学习笔记(五)——分类
1. 分类,顾名思义就是给我们一堆输入,某种规则将它们分为几类,例如利用信用卡信誉积分将顾客分为几档,从而决定是否给与贷款;根据病人的年龄、症状、患病时间来判断病人所患的病也是一种分类等等。现在还是以宝可梦为例,假设现在随着宝可梦越来越多,我们想要知道新抓的宝可梦是属于哪一种属性的。 先来看看假如用前面学过的线性回归的方法将它作为二值分类来解决会出现什么情况。图1 线性回归失效 如图,...
2019-07-28 09:55:58 237
原创 台大李宏毅Machine Learning学习笔记(四)——梯度下降
回顾笔记二中求参数w,bw,bw,b用的梯度下降法。在此,我们讲几个问题。小心地调节learning rate 如果learning rate太小,步伐太短,会需要很长时间才能到达极小值点,而如果步伐太大,会出现一直在极小值点附近振荡的情况,从而无法真正到达极小值点,甚至有可能会偏离极小值点,出现发散的情况,如图所示:图1 当参数多余两个的时候,不能够直观的在图上显示出来运动的轨...
2019-07-26 20:49:24 191
原创 台大李宏毅Machine Learning学习笔记(三)——线性回归代码和误差来源
线性回归的代码实现x_data = [338., 333., 328., 207., 226., 25., 179., 60., 208., 606.]y_data = [640., 633., 619., 393., 428., 27., 193., 66., 226., 1591.]#十个宝可梦的数据,线性模型#y_data=b+w*x_data#视频上的代码没有导入相关要用的模...
2019-07-23 19:50:30 264
原创 台大李宏毅Machine Learning学习笔记(二)——回归(Regression)(一)
先看一个实例,以直观理解回归:假设我抓到一只宝可梦,我想知道它进化后的cpcpcp值,以此来确定我是进化它还是把它当做食物喂其他的宝可梦(不忍~~)。在此,我们可以分三步进行:第一步:寻找一个模型(model) 模型有无穷无尽个,在此假设选取一个线性模型y=b+w⋅xcpy=b+w·x_{cp}y=b+w⋅xcp,其中,www,bbb为参数,yyy为进化之后宝可梦的cpcpcp值,...
2019-07-22 19:53:19 341
原创 台大李宏毅Machine Learning学习笔记(一)
1.机器学习的概念机器学习是人工智能领域的一个重要分支。二十世纪四十年代至六十年代,控制论的发展能够解决简单的线性模型问题,单无法解决XOR问题,而且那时计算机计算能力也不足;二十世纪八十年代,用于神经网络的反向传播(Back Propagation,BP)算法和统计学习理论的出现,掀起了机器学习的热潮。目前人们常说的深度学习是机器学习的一个重要分支,其发展的2个重要节点一是2006年深度置信...
2019-07-19 19:56:01 241
构建Kaldi需要的openfst和测试Kaldi是否安装成功的音频文件
2020-04-10
Consolas for Powerline FixedD.zip
2020-04-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人