Openjudge 1024:公共子序列(dp)

这篇博客探讨了如何解决最长公共子序列问题,通过动态规划的方法展示了一个高效的解决方案。作者介绍了递归和递推两种动归形式,并分析了它们的优缺点。文中给出了C++代码实现,用于计算两个字符串的最大公共子序列长度。此外,还讨论了如何使用滚动数组来优化空间复杂度。
摘要由CSDN通过智能技术生成

1024:公共子序列

总时间限制: 1000ms 内存限制: 65536kB

描述

我们称序列Z = < z1, z2, …, zk >是序列X = < x1, x2, …, xm >的子序列当且仅当存在 严格上升 的序列< i1, i2, …, ik >,使得对j = 1, 2, … ,k, 有xij = zj。比如Z = < a, b, f, c > 是X = < a, b, c, f, b, c >的子序列。

现在给出两个序列X和Y,你的任务是找到X和Y的最大公共子序列,也就是说要找到一个最长的序列Z,使得Z既是X的子序列也是Y的子序列。

输入

输入包括多组测试数据。每组数据包括一行,给出两个长度不超过200的字符串,表示两个序列。两个字符串之间由若干个空格隔开。

输出

对每组输入数据,输出一行,给出两个序列的最大公共子序列的长度。
样例输入

abcfbc         abfcab
programming    contest 
abcd           mnp

样例输出

4
2
0

动归的常用两种形式
1)递归型
优点:直观,容易编写
缺点:可能会因递归层数太深导致爆栈,函数调用带来额外时间开销。无法使用滚动数组节省空间。总体来说,比递推型慢。
1)递推型
效率高,有可能使用滚动数组节省空间

  1. 原问题分解成子问题,确定状态

输入两个串s1,s2,
设MaxLen(i,j)表示:
s1的左边i个字符形成的子串,与s2左边的j个字符形成的子串的最长公共子序列的长度(i,j从O开始算)
MaxLen(i,j)就是本题的“状态
假定len1 = strlen(s1),len2= strlen(s2)
那么题目就是要求MaxLen(len1,len2)

  1. 确定一些初始状态(边界状态)的值
    在这里插入图片描述
  2. 确定状态转移方程
    在这里插入图片描述

证明maxLen(s1, s2)不会比maxLen(s1, s2j-1)和maxLen(s1i-1,s2)任何一个小,也不会比两者都大。
在这里插入图片描述
在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;
char str1[205], str2[205];
int maxLen[205][205]; 
int main () {
  while (scanf("%s%s", str1, str2) == 2) {
  	int len1 = strlen(str1);
  	int len2 = strlen(str2);
  	for (int i = 1; i <= len1; i++)
  	  for (int j = 1; j <= len2; j++) {
  	    if (str1[i-1] == str2[j-1]) maxLen[i][j] = maxLen[i-1][j-1] + 1;
		else maxLen[i][j] = max(maxLen[i-1][j], maxLen[i][j-1]);
	  }
	printf("%d\n", maxLen[len1][len2]);
  }
  return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值