ClickHouse
文章平均质量分 77
是一个真正的列式数据库管理系统(DBMS)。
Alienware^
喜欢专研Java,Scala,Python,数据库,以及大数据框架系列知识。希望通过不断的学习,记录自己的点点滴滴。
展开
-
clickhouse 集群安装以及要点
文章目录分片集群分片 2 副本共 6 个节点集群配置(供参考)配置三节点版本集群及副本集群及副本规划(2 个分片,只有第一个分片有副本)配置步骤1)在 Bigdata04的/etc/clickhouse-server/config.d 目录下创建 metrika-shard.xml 文件2)将 Bigdata04的 metrika-shard.xml 同步到 Bigdata05 和 Bigdata063)修改 Bigdata05 和 Bigdata06 中 metrika-shard.xml 宏的配置 分片原创 2021-08-20 15:31:42 · 483 阅读 · 0 评论 -
clickhouse 副本引擎
文章目录副本副本写入流程配置步骤 副本 副本的目的主要是保障数据的高可用性,即使一台 ClickHouse 节点宕机,那么也可以从其他服务器获得相同的数据。 https://clickhouse.tech/docs/en/engines/table-engines/mergetree-family/replication/ 副本写入流程 配置步骤 (1)启动 zookeeper 集群 (2)在 Bigdata04 的/etc/clickhouse-server/config.d 目录下创建一个名为 met原创 2021-08-16 17:21:51 · 396 阅读 · 0 评论 -
clickhouse 表 SQL 操作
文章目录SQL 操作InsertUpdate 和 Delete查询操作alter 操作导出数据 SQL 操作 基本上来说传统关系型数据库(以 MySQL 为例)的 SQL 语句,ClickHouse 基本都支持,这里不会从头讲解 SQL 语法只介绍 ClickHouse 与标准 SQL(MySQL)不一致的地方。 Insert 基本与标准 SQL(MySQL)基本一致 (1)标准 insert into [table_name] values(…),(….) (2)从表到表的插入 insert into原创 2021-08-13 23:04:42 · 652 阅读 · 0 评论 -
clickhouse 表引擎 SummingMergeTree
文章目录 对于不查询明细,只关心以维度进行汇总聚合结果的场景。如果只使用普通的MergeTree的话,无论是存储空间的开销,还是查询时临时聚合的开销都比较大。 ClickHouse 为了这种场景,提供了一种能够“预聚合”的引擎 SummingMergeTree 1)案例演示 (1)创建表 create table t_order_smt( id UInt32, sku_id String, total_amount Decimal(16,2) , create_time Datetime ) en原创 2021-08-13 11:48:21 · 345 阅读 · 0 评论 -
clickhouse 表引擎 ReplacingMergeTree
文章目录 ReplacingMergeTree 是 MergeTree 的一个变种,它存储特性完全继承 MergeTree,只是多了一个去重的功能。 尽管 MergeTree 可以设置主键,但是 primary key 其实没有唯一约束的功能。如果你想处理掉重复的数据,可以借助这个 ReplacingMergeTree。 1)去重时机 数据的去重只会在合并的过程中出现。合并会在未知的时间在后台进行,所以你无法预先作出计划。有一些数据可能仍未被处理。 2)去重范围 如果表经过了分区,去重只会在分区内部进行去重原创 2021-08-13 10:51:16 · 1059 阅读 · 0 评论 -
clickhouse 最强大的表引擎 MergeTree 细度介绍
文章目录MergeTreepartition by 分区(可选)primary key 主键(可选)order by(必选)二级索引数据 TTL MergeTree ClickHouse 中最强大的表引擎当属 MergeTree(合并树)引擎及该系列(MergeTree)中的其他引擎,支持索引和分区,地位可以相当于 innodb 之于 Mysql。而且基于 MergeTree,还衍生除了很多小弟,也是非常有特色的引擎。 1)建表语句 create table t_order_mt( id UInt32,原创 2021-08-12 18:44:43 · 567 阅读 · 0 评论 -
细化MergeTree列中的分区目录信息
进入clickhouse 中的lib下 cd /var/lib/clickhouse 查看目录 主要看data 目录和 matedata目录 data目录是clickhouse中的数据,matedata是表中的目录。 进入matedata查看 结合clickhouse中的数据库查看 此时matedata 目录中存储的就是clickhouse的库。 进入default目录查看,当前目录下 正好是两个表名 对比clickhouse 客户端 进入data 目录下 cd /var/lib/clickhou原创 2021-08-12 17:17:18 · 238 阅读 · 0 评论 -
ClickHouse 常规表 引擎 (平时测试常用表引擎)
文章目录表引擎表引擎的使用TinyLogMemory 表引擎 表引擎的使用 表引擎是 ClickHouse 的一大特色。可以说, 表引擎决定了如何存储表的数据。包括: ➢ 数据的存储方式和位置,写到哪里以及从哪里读取数据。 ➢ 支持哪些查询以及如何支持。 ➢ 并发数据访问。 ➢ 索引的使用(如果存在)。 ➢ 是否可以执行多线程请求。 ➢ 数据复制参数。 表引擎的使用方式就是必须显式在创建表时定义该表使用的引擎,以及引擎使用的相关参数。 特别注意:引擎的名称大小写敏感 TinyLog 以列文件的形式保存在磁盘原创 2021-08-11 17:26:27 · 188 阅读 · 0 评论 -
ClickHouse的数据类型
文章目录整型浮点型布尔型Decimal 型字符串枚举类型时间类型数组 整型 固定长度的整型,包括有符号整型或无符号整型。 整型范围(-2n-1~2n-1-1): Int8 - [-128 : 127] Int16 - [-32768 : 32767] Int32 - [-2147483648 : 2147483647] Int64 - [-9223372036854775808 : 9223372036854775807] 无符号整型范围(0~2n-1): UInt8 - [0 : 255] UInt16原创 2021-08-11 17:00:56 · 672 阅读 · 0 评论 -
ClickHouse 的安装
文章目录准备工作确定防火墙处于关闭状态CentOS 取消打开文件数限制安装依赖CentOS 取消 SELINUX单机安装在 Bigdata04 的/opt/software 下创建 ck目录将/2.资料/ClickHouse 下 4 个文件上传到 Bigdata04 的software/ck目录下将安装文件同步到 Bigdata05、Bigdata06分别在三台机子上安装这 4 个 rpm 文件修改配置文件启动 Server查看Server状态关闭Server状态重启Server状态使用 client 连接原创 2021-08-11 09:52:11 · 260 阅读 · 0 评论 -
ClickHouse 入门
文章目录ClickHouse 的特点列式存储DBMS 的功能多样化引擎高吞吐写入能力数据分区与线程级并行性能对比 ClickHouse 是俄罗斯的 Yandex 于 2016 年开源的列式存储数据库(DBMS),使用 C++ 语言编写,主要用于在线分析处理查询(OLAP),能够使用 SQL 查询实时生成分析数据报 告 ClickHouse 的特点 列式存储 以下面的表为例: ID Name Age 1 张三 18 2 李四 22 3 王五 34 1)采用行式存储时,数据在磁盘上的原创 2021-08-10 16:23:46 · 1259 阅读 · 0 评论