numpy基础学习大纲

4.1 Numpy优势

1 简介
    科学计算库
    支持数组和矩阵操作
    ndarray
2 ndarray
    相同类型元素的集合
3 优势
    内存块上的优势
    并行化运算
    C语言编写,解除了GIL

4.2 N维数组-ndarray

1 属性
    ndarray.shape   数组的形状
    ndarray.ndim    数组维度
    ndarray.size    数组中的元素个数
    ndarray.itemsize    一个数组元素的字节长度
    ndarray.dtype   数组元素的类型
2 形状
    一维,二维,三维..
3 类型
    bool,int,float...
    创建数组时可以指定类型,整型默认为int64,浮点型默认为float64

4.3 基本操作

1 生成0 1 数组
    np.ones([])
    np.ones_like()
    np.zeros([])
    np.zeros_like()
2 从现有数组中生成(t通过修改查看复制后的数字是否发生改变)
    np.array() -- 深拷贝
    np.asarray() -- 浅拷贝
3 生成固定范围数组
    np.linspace()
        参数:
        start:起始值
        stop:终值
        num:元素个数
        返回:
        等差数列
    np.arange()
        参数:
        start:起始值
        stop:终值
        step:步长
        返回:
        等差
    np.logspace()
        参数:
        start:指数起始值
        stop:指数终值
        num:元素个数
        返回:
        以10为底的等比数列
4 生成随机数组
    1 正态分布(高斯分布)(当μ = 0,σ = 1时的正态分布是标准正态分布)
        1 参数
            μ :均值,决定了数据分布的位置(中心点在x轴上的位置)
            σ :标准差,反应数据的离散程度(标准差越小,,数据越集中)
        2 API
            np.random.normal()
            参数:
            loc : 均值
            scale : 标准差
            size: 数组形状
            np.random.randn()  参数指定形状
            np.random.stardand_normal()   
            生成标准正态分布的随机数
    2 均匀分布
        1 API
        np.random.uniform()
        参数:
        low:下界
        high:上界(不包含)
        size:数组形状
        np.random.rand()
        生成[0,1)之间均匀分布数据
        np.random.randint()
        生成整数的均匀分布数据
5 索引切片
    直接利用索引切片
    对像[:,:] -- 先行后列
6 形状修改
    np.reshape()
    不对原数组进行修改,
    行列不互换
    np.resize()
    对原数组进行修改
    行列不互换
    ndarray.T()
    转置,行列互换
7 类型修改
    ndarray.astype()
8 去重
    np.unique()

4.4 ndarray运算

1 逻辑运算
    直接使用逻辑运算符
2 通用判断函数
    np.any():存在满足条件的就返回True
    np.all():全部满足条件返回True
3 三元运算符
    np.where()
    结合logical_and和logical_or进行运算
4 统计运算
    min,max,mean,std,var...
    返回最大最小的索引时:
    argmax(),argmin()

4.5 数组间运算

1 数组与数之间的运算
    每一个元素与数进行运算
2 数组与数组之间
    1 两个数组形状相同时可以运算
    2 若形状不同,满足广播机制的条件也可以
        1 某一维度的大小相同
        2 其中一个数组的该维度大小为1

4.6 数学:矩阵

1 矩阵
    二维数组
2 向量
    特殊的矩阵,列向量
3 加法和标量乘法
    加法:对应元素相加
    标量乘法:每个元素与标量相乘
4 矩阵乘法
    (M行, N列)*(N行, L列) = (M行, L列)
    性质:
    满足结合律,不满足交换律
5 逆和转置
    1 单位矩阵
    对角线元素为1,其他位置为0
    2 逆
    若两个矩阵相乘的结果为单位矩阵,则这两个矩阵互为逆矩阵
    3 转置
    行列互换的结果
6 API
    np.matmul():只能用于矩阵与矩阵之间的乘法
    np.dot():可用于矩阵与矩阵,矩阵与标量之间的乘法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值