石子归并
思路:看到样例,然后自己举了几个例子发现贪心好像也是可以做的,就是把相加代价最小的两堆石子优先合并,交上去之后wa了,始终不觉得是思路有问题,没几行的代码找了好久的bug,愣是觉得no problem;
#include <bits/stdc++.h>
using namespace std;
int n, a[102];
int Right(int x) {
for(int i = x+1;i <= n; i++) {
if(a[i]) return i;
}
return -1;
}
int main() {
scanf("%d", &n);
for(int i = 1;i <= n; i++) {
scanf("%d", &a[i]);
}
pair <int, int> pos;
int num = n-1, ans = 0;
while(num--) {
int Min = 1e9;
for(int i = 1;i <= n-1; i++) {
if(a[i]) {
int j = Right(i);
if(Min > a[i]+a[j]) {
Min = a[i] + a[j];
pos = make_pair(i, j);
}
}
}
a[pos.second] += a[pos.first];
ans += a[pos.second];
a[pos.first] = 0;
}
printf("%d\n", ans);
}
看题解怎么说:
例如 149 92 137 95
贪心思路为 : 最小代价:
149 229 95 ans: 229 149 92 232 ans: 232
149 324 ans: 553 241 232 ans: 473
473 ans: 1026 473 ans: 946
所以没了呀,学习一波区间dp。
这个题也就是两个石堆之间合并,最终需要求 1~n 最少合并代价,我们可以从更细的地方入手,先求出区间为1的每个部分合并最少代价,在求区间为2的每个部分合并的最少代价;区间为3的可以从区间为2最少代价中转移过来。
1~3最少代价可以看成 :
1~1 的最小代价 + 2~3 的最小代价 + 1~3的数量之和 或者:
1~2 的最小代价 + 3~3 的最小代价 + 1~3的数量之和
前面两个 最小代价 相当于合成这样一个石堆之前需要多大的代价 之后这个 数量之和 是本次合并所需要付出的代价。 如此往复就可以求出1~n 所需要的最小代价。
#include <bits/stdc++.h>
using namespace std;
const int inf = 1e9;
int n, dp[105][105], a[105], pre[105];
int main() {
scanf("%d", &n);
for(int i = 1;i <= n; i++) {
scanf("%d", &a[i]);
pre[i] = pre[i-1]+a[i];
}
for(int i = 1;i <= n; i++) {
for(int j = 1;j <= n; j++) {
if(i == j) dp[i][j] = 0;
else dp[i][j] = inf;
}
}
for(int len = 1;len <= n; len++) { // 区间长度
for(int j = 1;j+len <= n+1; j++) { // 枚举起点
int ends = j + len - 1;
for(int i = j;i < ends; i++) { // 枚举切割点
dp[j][ends] = min(dp[j][ends], dp[j][i]+dp[i+1][ends]+pre[ends]-pre[j-1]);
}
}
}
printf("%d\n", dp[1][n]);
}