Play the Dice HDU - 4586 (期望、等比数列求和)

这篇博客介绍了一个基于概率和等比数列求和的骰子游戏问题。游戏规则是,一个骰子有n个面,每个面朝上的概率相等,某些面可以赢得面值并重新掷骰子。通过计算每次额外掷骰子的期望值,博主推导出等比数列的求和公式,得出在n趋向于无穷时的游戏总期望收益,最后强调了特殊情况的处理,如m等于n或平均值为0的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

题意:一个骰子🎲有n个面,扔一次骰子每个面朝上的概率都相等。每个面上都有一个数字,扔到多少就能拿多少钱,并且有一些面是特殊面,扔到这些面的话不光可以拿到这个面值,并且还能够再让你扔一次。现在问你参加一次游戏可以得多少钱。

思路:

扔一次获得💰的期望 avg 是 所有的面值 sum 除以面数 n;

扔第二次获得💰的期望是 m n ∗ a v g \frac{m}{n}*avg nmavg

扔第三次获得💰的期望是 ( m n ) 2 ∗ a v g (\frac{m}{n})^2*avg (n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值