在神经网络的训练过程中,iteration(迭代)和 epoch(周期)是两个不同的概念,但它们都与模型的训练过程密切相关。
-
Epoch(周期):
- 一个 epoch 表示整个训练数据集被模型完整地遍历一次。
- 例如,如果你的训练数据集有 1000 个样本,每批(batch)处理 10 个样本,那么完成一个 epoch 需要 100 次 batch 处理。
- 在每个 epoch 结束时,通常会评估模型的性能,并根据需要调整学习率等超参数。
-
Iteration(迭代):
- 一个 iteration 表示模型对一个 batch 的数据进行一次前向传播和反向传播的过程。
- 例如,如果你的训练数据集有 1000 个样本,每批处理 10 个样本,那么每个 epoch 包含 100 次 iteration。
- 每次 iteration 后,模型的权重会被更新。
总结来说:
- Epoch 是指整个训练数据集被模型完整地遍历一次。
- Iteration 是指模型对一个 batch 的数据进行一次前向传播和反向传播的过程。