DPCM 压缩系统
原理介绍
DPCM是差分预测编码调制的缩写,是比较典型的预测编码系统。在DPCM系统中,需要注意的是预测器的输入是已经解码以后的样本。之所以不用原始样本来做预测,是因为在解码端无法得到原始样本,只能得到存在误差的样本。因此,在DPCM编码器中实际内嵌了一个解码器,如编码器中虚线框中所示。
在一个DPCM系统中,有两个因素需要设计:预测器和量化器。理想情况下,预测器和量化器应进行联合优化。实际中,采用一种次优的设计方法:分别进行线性预测器和量化器的优化设计。
代码实现
编写代码实现量化比特数位1-8bit的DPCM编码并输出相应的预测误差图像和重建图像,此处以lena_noise为例。
代码如下:
#include "stdafx.h"
#include<iostream>
using namespace std;
int main(int argc, char* argv[])
{
FILE* YUV = NULL;
FILE* REBUILD = NULL;
FILE* PRE = NULL;
int w = 512;
int h = 512;
if ((fopen_s(&YUV, "lena_noise.yuv", "rb")) != 0)
{
cout << "Failed to open the YUV file!" << endl;
}
else
{
cout << "File successfully opened!" << endl;
}
if ((fopen_s(&PRE, "e.yuv", "wb")) != 0)
{
cout << "Failed to write in the RGB file!" << endl;
}
else
{
cout << "Successfully written RGB!" << endl;
}
if ((fopen_s(&REBUILD, "lenadpcm.yuv", "wb")) != 0)
{
cout << "Failed to write in the RGB file!" << endl;
}
else
{
cout << "Successfully written RGB!" << endl;
}
fseek(YUV, 0L, SEEK_END);
int size;
size = ftell(YUV);
fseek(YUV, 0L, SEEK_SET);
unsigned char* YUV_BUFFER = new unsigned char[size];
unsigned char* Y_BUFFER = new unsigned char[size / 3];
unsigned char* U_BUFFER = new unsigned char[size / 3];
unsigned char* V_BUFFER = new unsigned char[size / 3];
YUV_BUFFER = new unsigned char[size];
fread(YUV_BUFFER, sizeof(unsigned char), size, YUV);
for (int i = 0; i < (size / 3); i++)
{
Y_BUFFER[i] = YUV_BUFFER[i];
}
for (int i = 0; i < (size / 3); i++)
{
U_BUFFER[i] = YUV_BUFFER[i + (size / 3)];
}
for (int i = 0; i < (size / 3); i++)
{
V_BUFFER[i] = YUV_BUFFER[i + (size * 2 / 3)];
}
unsigned char* Y_REBUILD = new unsigned char[size * 2 / 3];
unsigned char* E_BUFFER = new unsigned char[size * 2 / 3];
for (int i = 0; i < h; i++)
{
for (int j = 0; j < w; j++)
{
int k = 0;
if (j == 0)
{
Y_REBUILD[j + i * w] = Y_BUFFER[j + i * w];
E_BUFFER[j + i * w] = 0;
}
if (j != 0)
{
k = Y_BUFFER[j + i * w] - Y_REBUILD[j + i * w - 1];
E_BUFFER[j + i * w] = (k + 256) / 2 - 1;
Y_REBUILD[j + i * w] = 2 * (E_BUFFER[j + i * w] + 1) + Y_REBUILD[j + i * w - 1];
}
}
}
fwrite(Y_REBUILD, sizeof(unsigned char), size / 3, REBUILD);
fwrite(U_BUFFER, sizeof(unsigned char), size / 3, REBUILD);
fwrite(V_BUFFER, sizeof(unsigned char), size / 3, REBUILD);
fwrite(E_BUFFER, sizeof(unsigned char), size / 3, PRE);
fwrite(U_BUFFER, sizeof(unsigned char), size / 3, PRE);
fwrite(V_BUFFER, sizeof(unsigned char), size / 3, PRE);
free(YUV_BUFFER);
free(Y_BUFFER);
free(U_BUFFER);
free(V_BUFFER);
free(Y_REBUILD);
}
我们将实验结果的三张图片进行对比:
以上图片为原始图片
以上图片为经编码后的图片
以上图片显示误差值
通过对比可以看出,经过dpcm编码过后的图片出现白色噪点,与图片本身噪声值较大有关,插值中轮廓即梯度较大处比较明显。
利用霍夫曼编码器编码比较
再利用以上手段对图片进行8bit,4bit,2bitdpcm处理后
利用已有的霍夫曼编码器编码得到如下结果:
对比.huff文件大小计算压缩比:
量化比特数 | 压缩前大小 | 压缩后大小 | 压缩比 |
---|---|---|---|
768 | 610 | 0.79 | |
8 | 768 | 379 | 0.49 |
4 | 768 | 206 | 0.27 |
2 | 768 | 180 | 0.23 |
由上表可知,利用DPCM+熵编码可以成功的压缩图像的大小,且量化比特数越小,压缩比越来越小,压缩效率越来越高,但随着量化比特数的减小,失真度会上升。对于本实验而言,采取8bit量化下的DPCM+熵编码既可以实现50%左右的压缩效果,相对于仅使用熵编码的方法的压缩效果更好。