算法设计之图像压缩问题

图像压缩问题

问题描述
给定像素序列,求出最优分段及所占字节数。

输出s[0],s[1],s[2]…及l[1],l[2],l[3]…的计算过程,并给出最终解。

例如实例1最后输出:

最优分段是:<10,12,15>,<255>,<1,2> 总存储位数为:57

完整代码

//Copyright (c) 2021 @CSDN_每天三点睡 All rights reserved.
#include<iostream.h>
#define MAX 20
int S[MAX]={0},l[MAX]={0},b[MAX],C[MAX];//全局数组初始化 

//计算P[i]对应的对数 
int length(int n)
{
 int t=1;
 while(n>=2)
 {
  t++;
  n/=2;
 }
 return t;
}

//求最优分段 
void Traceback(int P[],int n,int l[])
{
 int i=1,j,k=1,x=0;
 while(n!=0)//当n不为0,即P中数据还没有分配完 
 {
  C[i]=l[n];//C[i]从后往前追踪第i段长度 
  n-=l[n];//n减去上一个分段的长度 
  i++;
  x++;//x记录分成多少段 
 }
 cout<<"最小位数的最优分段是:";
 for(i=x;i>=1;i--)//输出x个分段 
 {
  cout<<"<";
  for(j=C[i];j>=1;j--)//该段有C[i]个数据,从后往前输出 
  {
   cout<<" "<<P[k++]<<" ";
   if(j-1>=1)  
    cout<<",";
  }
  cout<<">";
  if(i-1>=1)  
   cout<<" , ";
 }
 cout<<endl;
}
//压缩图像(核心代码) 包含输出 
void Compress(int P[],int n)
{
 int Lmax=256,header=11,bmax;//Lmax为最大段长,header为每个段头占用的空间11 
 S[0]=0;
 int i,j;
 for (i=1;i<=n;i++)
 {
  
  b[i]=length(P[i]);//b[i]为第i个像素灰度的二进制位数 
  bmax=b[i];//初始化bmax为p[i]的二进制位数 
  S[i]=S[i-1]+bmax;//初始化当前的二进制位数是上一段的位数加上当前p[i]的二进制位数 
  l[i]=1;//初始化分段为1,如果找到更好的分段,就等于新的分段 
	cout<<"S["<<i<<"]=min{"; //输出求解过程,实际上可利用数组转存,在子函数中调用输出 
  for(j=1;j<=i;j++)//最后一段含有j个像素,j=2,3,4....t 
  {  
   	
   if(bmax<b[i-j+1])//统一段内表示像素的二进制位数 
    bmax=b[i-j+1];
	cout<<S[i-j]+j*bmax;//输出选择可能数据 
   if(S[i]>S[i-j]+j*bmax) 
   {
    S[i]=S[i-j]+j*bmax;  //将最小的长度赋给S[i]  
    l[i]=j;//l[i]记录更新后分段的元素个数 
   } 
   if(j+1<=i)
    cout<<" ,"; //优化格式输出(边求解边输出过程) 
  }
  S[i]+=header;//加上段头长度11 
  	cout<<"}+"<<header<<"="; 
	cout<<S[i]<<endl;
  	cout<<"l["<<i<<"]="<<l[i]<<endl;//输出S[i],此时包含了段头长度 
  	cout<<endl;
 }
 Traceback(P,n,l);//调用追踪函数 
}
int main()
{
 int P[]={0,10,12,15,255,1,2}; 
 int P2[]={0,1,1,0,1,233,28,58,60};
 cout<<"实例1"<<endl;
 Compress(P,6);
  cout<<"总存储位数为:" <<S[6]<<endl;
 cout<<"实例2"<<endl;
 Compress(P2,8);
  cout<<"总存储位数为:" <<S[8]<<endl;
}

结语

制作不易,喜欢点赞支持一下。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值