Python+Tesser-OCR实现图片识别

一、平台

    win7 ,编译器pycharm or sublime 

二、导包

    导入两个包

    1、Pillow

    2、pytessract

    导包方式有两种:

    1、直接在windows的cmd里面输入命令

         pip install Pillow

         pip insatll pytessract

2、 通过pycharm安装包
在这里插入图片描述

三、安装tesseract-OCR

软件链接:[点击打开链接]

安装遇到如下选择additional language data

选择需要用到的语言包。如中文识别选(chinese(simple))

记下安装目录后面会用到。

在这里插入图片描述

在这里插入图片描述

四、创建程序 xx.py

找到自己的python环境所在位置

我的在E:\environment\python\Lib\site-packages\pytesseract\

在该目录下找到pytesseract.py 打开更改为:
tesseract_cmd=‘C:\Users\Administrator\Desktop\Imagerecognition\Imagerecognition\Lib\site-packages\Tesseract-OCR\tesseract.exe’ #该路径为安装OCR对应的目录

在这里插入图片描述

五、创建一个新的程序,输入如下代码:

from PIL import Image
import pytesseract
image = Image.open(‘7.png’)#输入自己想识别图片的路径
#指定路径,路径为安装的OCR对应的目录
tessdata_dir_config = ‘–tessdata-dir “C:/Users/Administrator/Desktop/Imagerecognition/Imagerecognition/Lib/site-packages/Tesseract-OCR/tessdata”’
text = pytesseract.image_to_string(image,lang=‘chi_sim’,config=tessdata_dir_config)
print(text)

六、运行程序

识别的图片:

在这里插入图片描述

识别的结果:

在这里插入图片描述

六、PS

对于文字清晰的图片的识别度大概有90%以上。缺点是识别的速度不够快。

ps:(该文章是我以前发布过的 账号忘了重新发了一个!)

### 如何设置和配置 Python 编译环境 #### 设置Sublime Text中的Python编译环境 为了使Sublime Text能够识别并使用特定版本的Python解释器,如Python 2.7或Python 3.6.8,在编辑器内创建自定义构建系统是必要的。这可以通过编写JSON格式的`.sublime-build`文件来实现,该文件指定了用于启动Python进程的确切路径以及任何附加参数。 对于Windows操作系统而言,假设已知Python安装目录为`D:\Development Tools\Python`,那么针对不同版本Python的具体配置如下: - **Python 2.7** ```json { "cmd": ["D:\\Development Tools\\Python27\\python.exe", "-u", "$file"], "file_regex": "^[ ]*File \"(...*?)\", line ([0-9]*)", "selector": "source.python" } ``` 此段脚本设置了当用户尝试运行当前活动文档时所使用的命令行指令;这里指定的是位于给定位置下的Python可执行文件,并传递了未缓冲标准输出选项(`-u`)以确保即时反馈[^1]。 - **Python 3.6.8** ```json { "cmd": ["D:\\Development Tools\\Python36\\python.exe", "-u", "$file"], "file_regex": "^[ ]*File \"(...*?)\", line ([0-9]*)", "selector": "source.python" } ``` 上述两部分展示了如何通过修改`*.sublime-build`文件内的`cmd`字段指向不同的Python解释器实例从而支持多版本间的切换。 完成以上操作之后,保存这些更改并将它们放置于Sublime Text的Packages/User目录下适当命名(例如命名为`Python2.sublime-build` 和 `Python3.sublime-build`)。接着就可以从菜单栏中选择对应的Build System来进行相应的Python版本程序测试了[^4]。 #### 测试Python环境是否正确安装 除了在IDE内部做相应调整外,验证本地计算机上是否存在有效的工作副本同样重要。可以按照以下方法检验Python是否被正确部署到目标机器上: 按下组合键`Win+R`调出“运行”对话框,输入`cmd`后点击确认按钮开启命令提示符界面。在此处键入`python --version`查看返回的结果——理想情况下应显示具体的发行版号信息,表明软件包已被妥善安置到位[^5]。 另外一种方式是在命令行终端里直接打入`python`进入交互模式后再试着导入一些基础模块像`this`一样简单地检查语法高亮等功能能否正常运作[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值