Pandas教程06 - csv,hdf5,json等文件数据的读取和保存
pandas一站式学习->: pandas一站式学习,创建,索引使用,运算,pd可视化柱状图等,csv,hdf5,json格式数据读取存储,NaN值处理,数据离散化,数据合并,交叉表与透视表
python一站式学习->: python一站式学习,python基础,数据类型,numpy,pandas,机器学习,NLP自然语言处理,deepseek大预言模型,Tensorflow,CV视觉
CSV保存数据
import pandas as pd
# path_or_buf 存储路径
# sep: 数据分隔符
# columns: 存储哪些列
# mode: 默认-w重写,a追加
# index = True: 是否写进行索引
# header =True: 是否写进列索引
p1 = pd.DataFrame([{"name":"zc","age":18,"sex":"男"}])
pd.DataFrame(p1).to_csv("./aa.csv",mode="w")
CSV读取数据
import pandas as pd
# filepath_or_buffer: 读取的路径
# usecols: 读取那几列
# sep: 文件数据分隔符,默认是逗号
p1 = pd.read_csv(filepath_or_buffer='aa.csv', usecols=[],sep=',')
HDF5保存数据
操作HDF5需要依赖包 tables
pip install tables
- hdf5存储的是二进制数据,读取和存储时候需要指定一个键,值为要存储或读取的DataFarme
- 因此hdf5可以存储三维数据
import pandas as pd
# path_or_buf 存储路径
# mode: 默认-w重写,a追加
# key: 存储数据的key
p1 = pd.DataFrame([{"name":"zc","age":18,"sex":"男"}])
p1.to_hdf(path_or_buf="./bb.h5",mode="w",key="stuInfo")
HDF5读取数据
import pandas as pd
# filepath_or_buffer: 读取的路径
# key: 要读取数据的key,文件中只有一个key时候可以不指定,如果多个key必须指定key
p1 = pd.read_hdf(path_or_buf='bb.h5',key=None)
p1
HDF5获取key
当新得到一个h5数据文件,并不知道存储数据的key是什么,可以按照次方法获取
import pandas as pd
with pd.HDFStore('bb.h5') as store:
# 获取所有存储的键
keys = store.keys()
print("可用的键:", keys)
# 结果: 可用的键: ['/stuInfo']
JSON保存数据
import pandas as pd
# path_or_buf 存储路径
# mode: 默认-w重写,a追加
# orient: records 传统json格式
# lines: 默认False,是否按照每行读取json对象
p1 = pd.DataFrame([{"name":"zc","age":18,"sex":"男"}])
p1.to_json(path_or_buf="./cc.json",mode="a",orient="records",lines=True)
JSON读取数据
import pandas as pd
# path_or_buf: 读取的路径
# orient: records 传统json格式
# lines: 默认False,是否按照每行读取json对象
# tpye: 默认frame,指定转换的对象类型是series或者dataframe
p1 = pd.read_json(path_or_buf='./cc.json',orient="records",lines=True)