问题描述
借助堆栈以非递归(循环)方式求解汉诺塔的问题(n, a, b, c),即将N个盘子从起始柱(标记为“a”)通过借助柱(标记为“b”)移动到目标柱(标记为“c”),并保证每个移动符合汉诺塔问题的要求。
输入
输入为一个正整数N,即起始柱上的盘数。
输出
每个操作(移动)占一行,按柱1 -> 柱2的格式输出。
问题分析
汉诺塔的基本思路是不断将n个盘的汉诺塔问题转换为2个n-1的问题,用递归实现,当把n盘问题转换成n-1盘问题时,问题的起始柱和目标柱都发生了变化,设n盘问题为(n,a,b,c),其中参数如实验内容定义,则问题转换为(n-1,a,c,b),(1,a,b,c),(n-1,b,a,c)这三个问题,其中(1,a,b,c)不需要递归,按顺序压入堆栈
递归
void hanoi(int n,char A,char B,char C)
{
if(n==1)
move(A,C);
else
{
hanoi(n-1,A,C,B);
move(A,C);
hanoi(n-1,B,A,C);
}
}
非递归
当将分解出的上述三个问题压入堆栈时,按照“需要先求解的问题后压入”的顺序,压入顺序为(n-1,b,a,c),(1,a,b,c),(n-1,a,c,b)
核心代码(伪代码)
将初始问题(n,a,b,c)放入堆栈中
while(堆栈不空)
{
Pop堆栈顶问题,设为(n,a,b,c);
if(n==1)
printf a->c;
else
{
Push(n-1,b,a,c);
Push(1,a,b,c);
Push(n-1,a,c,b);
}
}
程序设计步骤
1.主函数设计
int main()
{
int n;
scanf("%d",&n);
Hanoi(n);//借助堆栈的非递归实现
return 0;
}
2.需要设计的函数
void Push(Stack *PtrS, ElementType item);//入栈
ElementType Pop(Stack *PtrS);//出栈
void Hanoi(int n);//迭代解决并输出
可以也可以不用设计判断栈空的函数
2.1入栈和出栈的函数
void Push(Stack *PtrS, ElementType item)
{
PtrS->Data[++(PtrS->Top)] = item;
}
ElementType Pop(Stack *PtrS){
PtrS->Top--;
return(PtrS->Data[PtrS->Top+1]);
}
2.2hanoi
void Hanoi(int n){
ElementType P, toPush;//P为当前待解决的汉诺塔问题(随迭代规模递减),toPush为当前问题的子问题(N-1和1,其中N-1又分为两步)
Stack S;
P.N = n; P.A = 'a'; P.B = 'b'; P.C = 'c';
S.Top = -1;
Push(&S, P);
while(S.Top!=-1){
P = Pop(&S);//每次解决栈顶问题,根据先进后出原则,每个问题的子问题1应最后入栈
if(P.N==1) printf("%c -> %c\n",P.A, P.C);//N为1便无须分解为子问题
else{
toPush.N = P.N - 1;
toPush.A = P.B; toPush.B = P.A; toPush.C = P.C;//子问题2:把N-1的部分由借助柱转移至目标柱
Push(&S, toPush);//子问题2入栈
toPush.N = 1;
toPush.A = P.A; toPush.B = P.B; toPush.C = P.C;//规模为1时可直接解决
Push(&S, toPush);//可直接求解的子问题入栈
toPush.N = P.N - 1;
toPush.A = P.A; toPush.B = P.C; toPush.C = P.B;//子问题1:把N-1的部分由起始柱转移至借助柱
Push(&S, toPush);//子问题1入栈
}
}
}
2.3汉诺塔类型的结构类型定义和栈的定义
typedef struct{//汉诺塔问题结构类型
int N;//盘数
char A;//起始柱
char B;//借助柱
char C;//目标柱
} ElementType;
typedef struct{//栈的标准定义
ElementType Data[MaxSize];
int Top;
}Stack;
3总代码
#include<stdio.h>
#define MaxSize 100
typedef struct{//汉诺塔问题结构类型
int N;//盘数
char A;//起始柱
char B;//借助柱
char C;//目标柱
} ElementType;
typedef struct{//栈的标准定义
ElementType Data[MaxSize];
int Top;
}Stack;
void Push(Stack *PtrS, ElementType item);//入栈
ElementType Pop(Stack *PtrS);//出栈
void Hanoi(int n);//迭代解决并输出
int main()
{
int n;
scanf("%d",&n);
Hanoi(n);
return 0;
}
void Hanoi(int n){
ElementType P, toPush;//P为当前待解决的汉诺塔问题(随迭代规模递减),toPush为当前问题的子问题(N-1和1,其中N-1又分为两步)
Stack S;
P.N = n; P.A = 'a'; P.B = 'b'; P.C = 'c';
S.Top = -1;
Push(&S, P);
while(S.Top!=-1){
P = Pop(&S);//每次解决栈顶问题,根据先进后出原则,每个问题的子问题1应最后入栈
if(P.N==1) printf("%c -> %c\n",P.A, P.C);//N为1便无须分解为子问题
else{
toPush.N = P.N - 1;
toPush.A = P.B; toPush.B = P.A; toPush.C = P.C;//子问题2:把N-1的部分由借助柱转移至目标柱
Push(&S, toPush);//子问题2入栈
toPush.N = 1;
toPush.A = P.A; toPush.B = P.B; toPush.C = P.C;//规模为1时可直接解决
Push(&S, toPush);//可直接求解的子问题入栈
toPush.N = P.N - 1;
toPush.A = P.A; toPush.B = P.C; toPush.C = P.B;//子问题1:把N-1的部分由起始柱转移至借助柱
Push(&S, toPush);//子问题1入栈
}
}
}
void Push(Stack *PtrS, ElementType item){
PtrS->Data[++(PtrS->Top)] = item;
return;
}
ElementType Pop(Stack *PtrS){
PtrS->Top--;
return(PtrS->Data[PtrS->Top+1]);
}
to be countine…