图像处理的基础知识

位姿:
两个空间坐标系之间的位移和旋转。

图像的频率被称为空间频率,空间频率是指单位长度内亮度做周期性变化的次数

每个像素对应矩阵上的一个数。

外参就是:旋转和平移

相机矩阵:世界坐标>图像坐标
内参矩阵:图像坐标>像素坐标
外参矩阵:世界坐标>相机坐标

两个字符串进行异或运算,并统计结果为1的个数,那么这个数就是汉明距离。
总结
相比于两视图的基础矩阵(本质矩阵)来说,两图像的单应矩阵比较难理解一些。针对本文,总结以下几点
使用场景
基础矩阵表示的是两视图的对极约束,和三维场景的结构无关,只依赖于相机的内参数以及外参数,需要两个相机的位置有旋转和平移
单应矩阵对场景的三维结构有了更多的要求,需要场景中的点在同一个平面上; 或者是,对相机的位姿有了要求,两个相机之间只有旋转而无平移
约束关系
基础矩阵表示的像点和另一幅图像上的对极线的映射关系,使用基础矩阵无法得到像点对应点在另一幅图像上的确切位置。
单应矩阵则是点和点的映射,使用单应矩阵可以找到像点在另一幅图像上对应点的确切位置。
使用单应矩阵而不是基础矩阵
相机只有旋转而无平移的时候,两视图的对极约束不成立,基础矩阵F为零矩阵,这时候需要使用单应矩阵H
场景中的点都在同一个平面上,可以使用单应矩阵计算像点的匹配点。
相机的平移距离相对于场景的深度较小的时候,也可以使用单应矩阵H。

SLAM:同时定位于地图构建

相机内参是相机坐标到像素坐标的转换矩阵

单目成像过程:
1.首先,世界坐标系下有一个固定的点P,世界坐标为Pw。
2.由于相机在运动,它的运动由R,t或变换矩阵T∈SE(3)描述。P的相机坐标为Pc=RPw+t。
3.这时的P仍有X,Y,Z三个量,把它们投影到归一化平面Z=1上,得到归一化相机坐标:Pc=[X/Z,Y/Z,1]^T。
4.最后,P的归一化坐标经过内参后,对应到它的像素坐标:Puv=KPc。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值