其参数格式为
tf.reduce_sum(
input_tensor,
axis=None,
keepdims=None,
name=None)
解释一下各个参数的意义:
input_tensor:待求和的tensor;
axis:指定的维,如果不指定,则计算所有元素的总和;
keepdims:是否保持原有张量的维度,设置为True,结果保持输入tensor的形状,设置为False,结果会降低维度,如果不传入这个参数,则系统默认为False;
name:操作的名称;
代码示例:
[[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]],
[[ 13 14 15 16]
[ 17 18 19 20]
[ 21 22 23 24]]]
进行以下操作:
tf.reduce_sum(tensor, axis=0)
得到的结果为:
[[1+13 2+14 3+15 4+16]
[5+17 6+18 7+19 8+20]
[9+21 10+22 11+23 12+24]]
所以一个 2 * 3 * 4 的数组通过对第一个维度求和,变成了一个134的数组