Day41 | 343. 整数拆分 |96. 不同的二叉搜索树

343. 整数拆分

注意点:

1.数值尽可能相等,乘积才会越大

2.递推公式,j*(i-j)是两个数相乘, j*dp[i-j]是两个及两个以上的数相乘--max(j*(i-j), j*dp[i-j]);因为还需要记录一下最大的dp,所以最后需要加上dp[i],只是针对第二层for循环for(int j = 1; j <= i/2; j++)的

class Solution {
public:
    int integerBreak(int n) {
        // 1.dp就是正整数n拆分后的最大乘积值
        vector<int> dp(n+1);
        //3.数组的初始化,当n为0或1的时候,不能拆分,没有意义
        dp[1] = dp[0] = 1;
        dp[2] = 1;

        // 4.确定遍历顺序
        for(int i = 3; i<= n; i++){
            // 两个数之间差值越小乘积越大,所以j<=i/2,如果是j<=i,会重复计算
            for(int j = 1; j <= i/2; j++) {
                // 2.递推公式,j*(i-j)是两个数相乘, j*dp[i-j]是两个及两个以上的数相乘--max(j*(i-j), j*dp[i-j]);因为还需要记录一下最大的dp,所以最后需要加上dp[i],只是针对第二层for循环for(int j = 1; j <= i/2; j++)的
                
                dp[i] = max(max(j*(i-j), j*dp[i-j]), dp[i]);
                // cout << j*(i-j) << ' ' << j*dp[i-j] << " " << dp[i]<<endl;
            }
        }
        return dp[n];


    }
};


//第二种方法
class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n+1, 0);

        dp[0] = dp[1] = 1; 


        for(int i = 2; i<= n; i++) {
            for(int j = 1; j<=i/2; j++) {
                dp[i] = max(max(j*(i-j), j*dp[i-j]), dp[i]);
                // cout <<"dp[0]=" <<dp[0]<<"dp[2]=" <<dp[2];
            }
        }
    return dp[n];
    }
};

96. 不同的二叉搜索树

注意点:

1.二叉树:左孩子小于中间节点,右孩子大于中间节点

2.dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

class Solution {
public:
    int numTrees(int n) {
        // 1.dp的含义就是当i=n的时候,二叉搜索树的种数
        vector<int> dp(n+1);
        // 3.确定初始值
        dp[0] = 1;
        // 4.确定遍历顺序
        for(int i = 1; i<= n; i++) {
        // 因为dp[3]中用到了dp[2]所以就需要双层循环,第一层循环是得到dp[3]的数目的,第二层循环是得到dp[2]的数目的
            for(int j = 1; j <= i; j++){
    // 2.确定递推公式
    // 当n为3的时候,dp[3] =当1为根节点的种数+当2为根节点的种数+当3为根节点的种数,即dp[3] = dp[0]*dp[2] + dp[1]*dp[1]+dp[2]*dp[1]
                dp[i] += dp[j-1]*dp[i-j];
            }
        }

        return dp[n];

        
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值