注意点:
1.数值尽可能相等,乘积才会越大
2.递推公式,j*(i-j)是两个数相乘, j*dp[i-j]是两个及两个以上的数相乘--max(j*(i-j), j*dp[i-j]);因为还需要记录一下最大的dp,所以最后需要加上dp[i],只是针对第二层for循环for(int j = 1; j <= i/2; j++)的
class Solution {
public:
int integerBreak(int n) {
// 1.dp就是正整数n拆分后的最大乘积值
vector<int> dp(n+1);
//3.数组的初始化,当n为0或1的时候,不能拆分,没有意义
dp[1] = dp[0] = 1;
dp[2] = 1;
// 4.确定遍历顺序
for(int i = 3; i<= n; i++){
// 两个数之间差值越小乘积越大,所以j<=i/2,如果是j<=i,会重复计算
for(int j = 1; j <= i/2; j++) {
// 2.递推公式,j*(i-j)是两个数相乘, j*dp[i-j]是两个及两个以上的数相乘--max(j*(i-j), j*dp[i-j]);因为还需要记录一下最大的dp,所以最后需要加上dp[i],只是针对第二层for循环for(int j = 1; j <= i/2; j++)的
dp[i] = max(max(j*(i-j), j*dp[i-j]), dp[i]);
// cout << j*(i-j) << ' ' << j*dp[i-j] << " " << dp[i]<<endl;
}
}
return dp[n];
}
};
//第二种方法
class Solution {
public:
int integerBreak(int n) {
vector<int> dp(n+1, 0);
dp[0] = dp[1] = 1;
for(int i = 2; i<= n; i++) {
for(int j = 1; j<=i/2; j++) {
dp[i] = max(max(j*(i-j), j*dp[i-j]), dp[i]);
// cout <<"dp[0]=" <<dp[0]<<"dp[2]=" <<dp[2];
}
}
return dp[n];
}
};
注意点:
1.二叉树:左孩子小于中间节点,右孩子大于中间节点
2.dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量
元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量
元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量
元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量
class Solution {
public:
int numTrees(int n) {
// 1.dp的含义就是当i=n的时候,二叉搜索树的种数
vector<int> dp(n+1);
// 3.确定初始值
dp[0] = 1;
// 4.确定遍历顺序
for(int i = 1; i<= n; i++) {
// 因为dp[3]中用到了dp[2]所以就需要双层循环,第一层循环是得到dp[3]的数目的,第二层循环是得到dp[2]的数目的
for(int j = 1; j <= i; j++){
// 2.确定递推公式
// 当n为3的时候,dp[3] =当1为根节点的种数+当2为根节点的种数+当3为根节点的种数,即dp[3] = dp[0]*dp[2] + dp[1]*dp[1]+dp[2]*dp[1]
dp[i] += dp[j-1]*dp[i-j];
}
}
return dp[n];
}
};