单卡没有问题,在使用accelerate多卡训练时出现
RuntimeError: Expected to have finished reduction in the prior iteration before starting a new one. This error indicates that your module has parameters that were not used in producing loss. You can enable unused parameter detection by (1) passing the keyword argument `find_unused_parameters=True` to `torch.nn.parallel.DistributedDataParallel`; (2) making sure all `forward` function outputs participate in calculating loss. If you already have done the above two steps, then the distributed data parallel module wasn't able to locate the output tensors in the return value of your module's `forward` function. Please include the loss function and the structure of the return value of `forward` of your module when reporting this issue (e.g. list, dict, iterable).
然后参考文章的解决方法,在梯度回传之后,参数更新之前,插入了代码
for name, param in model.named_parameters():
if param.grad is None:
print(name)
发现是Bert Model的pooler没有接收到梯度。这是因为我的loss没有使用Bert输出的loss。
因此,冻结对应参数即可