数据标准化之最大最小归一化(原理+Pyhon代码)

一、原理介绍

通常情况下,在建模之前,都需要对数据进行标准化处理,以消除量纲的影响。如果对未标准化的数据直接进行建模,可能会导致模型对数值大的变量学习过多,而对数值小的变量训练不够充分,往往模型效果会不好。常用的数据标准化方法有最大最小归一化、均值方差标准化、小数定标法、定量特征二值化等。

最大最小归一化,顾名思义,就是利用数据列中的最大值和最小值进行标准化处理,标准化后的数值处于[0,1]之间,计算方式为数据与该列的最小值作差,再除以极差。
具体公式为: x ′ = x − m i n m a x − m i n x'=\frac{x-min}{max-min} x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值