#6229. 这是一道简单的数学题(反演 + 杜教筛)

#6229. 这是一道简单的数学题

推式子

∑ i = 1 n ∑ j = 1 i l c m ( i , j ) g c d ( i , j ) = ( ∑ i = 1 n ∑ j = 1 n l c m ( i , j ) g c d ( i , j ) + n ) ∗ i n v 2 所 以 重 点 求 ∑ i = 1 n ∑ j = 1 n l c m ( i , j ) g c d ( i , j ) = ∑ i = 1 n ∑ j = 1 n i j g c d ( i , j ) 2 = ∑ d = 1 n ∑ i = 1 n d ∑ j = 1 n d i j ( g c d ( i , j ) = = 1 ) = ∑ d = 1 n ∑ k = 1 n d μ ( k ) k 2 ( ∑ i = 1 n k d i ) 2 我 们 另 t = k d , 得 到 ∑ t = 1 n ( ∑ i = 1 n t i ) 2 ∑ k ∣ t μ ( k ) k 2 接 下 来 就 是 考 虑 如 何 在 非 线 性 的 时 间 内 筛 选 出 ∑ k ∣ t μ ( k ) k 2 的 前 缀 和 来 我 们 设 f ( n ) = ( μ   i d 2 ∗ I ) ( n ) , 也 就 是 ∑ k ∣ t μ ( k ) k 2 的 卷 积 形 式 。 g ( n ) = i d 2 , 显 然 有 f ( n ) ∗ g ( n ) = μ   i d 2 ∗ I ∗ i d 2 μ   i d 2 ∗ i d 2 = ∑ d ∣ n μ ( d ) d 2 ( n d ) 2 = n 2 ϵ = ϵ 所 以 有 f ( n ) ∗ g ( n ) = I 套 进 杜 教 筛 里 面 去 得 到 S ( n ) = ∑ i = 1 n I − ∑ d = 2 n d 2 S ( n d ) \sum_{i = 1} ^{n} \sum_{j = 1} ^{i} \frac{lcm(i, j)}{gcd(i, j)}\\ = (\sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \frac{lcm(i, j)}{gcd(i, j)} + n) * inv2\\ 所以重点求\sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \frac{lcm(i, j)}{gcd(i, j)}\\ = \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \frac{ij}{gcd(i, j) ^ 2}\\ = \sum_{d = 1} ^{n} \sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{\frac{n}{d}}ij (gcd(i, j) == 1)\\ = \sum_{d = 1} ^{n} \sum_{k = 1} ^{\frac{n}{d}} \mu(k) k ^ 2 (\sum_{i = 1} ^{\frac{n}{kd}} i) ^ 2\\ 我们另t = kd,得到\\ \sum_{t = 1} ^{n} (\sum_{i = 1} ^{\frac{n}{t}}i) ^ 2 \sum_{k \mid t} \mu(k) k ^ 2\\ 接下来就是考虑如何在非线性的时间内筛选出\sum_{k \mid t} \mu(k) k ^ 2的前缀和来\\ 我们设f(n) = (\mu\ id ^ 2 * I)(n),也就是\sum_{k \mid t} \mu(k) k ^ 2的卷积形式。\\ g(n) = id ^ 2, 显然有f(n) * g(n) = \mu\ id ^ 2 * I * id ^ 2\\ \mu\ id ^ 2 * id ^ 2 = \sum_{d \mid n} \mu(d) d ^ 2 (\frac{n}{d}) ^ 2 = n ^ 2\epsilon = \epsilon\\ 所以有f(n) * g(n) = I\\ 套进杜教筛里面去得到S(n) = \sum_{i = 1} ^{n} I - \sum_{d = 2} ^{n} d ^ 2S(\frac{n}{d})\\ i=1nj=1igcd(i,j)lcm(i,j)=(i=1nj=1ngcd(i,j)lcm(i,j)+n)inv2i=1nj=1ngcd(i,j)lcm(i,j)=i=1nj=1ngcd(i,j)2ij=d=1ni=1dnj=1dnij(gcd(i,j)==1)=d=1nk=1dnμ(k)k2(i=1kdni)2t=kdt=1n(i=1tni)2ktμ(k)k2线ktμ(k)k2f(n)=(μ id2I)(n)ktμ(k)k2g(n)=id2,f(n)g(n)=μ id2Iid2μ id2id2=dnμ(d)d2(dn)2=n2ϵ=ϵf(n)g(n)=IS(n)=i=1nId=2nd2S(dn)

代码

/*
  Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define endl "\n"

using namespace std;

typedef long long ll;

const int inf = 0x3f3f3f3f;
const double eps = 1e-7;

const int mod = 1e9 + 7, N = 1e6 + 10, inv6 = 166666668, inv2 = 500000004;

int prime[N], mu[N], cnt;

ll sum[N];

bool st[N];

ll quick_pow(ll a, int n) {
    ll ans = 1;
    while(n) {
        if(n & 1) ans = ans * a % mod;
        a = a * a % mod;
        n >>= 1;
    }
    return ans;
}

void init() {
    mu[1] = 1;
    for(int i = 2; i < N; i++) {
        if(!st[i]) {
            prime[cnt++] = i;
            mu[i] = -1;
        }
        for(int j = 0; j < cnt && i * prime[j] < N; j++) {
            st[i * prime[j]] = 1;
            if(i % prime[j] == 0)   break;
            mu[i * prime[j]] = -mu[i];
        }
    }
    for(int i = 1; i < N; i++) {
        for(int j = i; j < N; j += i) {
            sum[j] = (sum[j] + 1ll * i * i % mod * mu[i] % mod + mod) % mod;
        }
    }
    for(int i = 1; i < N; i++) {
        sum[i] = (sum[i] + sum[i - 1]) % mod;
    }
}

ll calc1(ll n) {
    ll ans = 1ll * (1 + n) * n / 2 % mod;
    return 1ll * ans * ans % mod;
}

ll calc2(ll n) {
    return 1ll * n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod;
}

unordered_map<int, int> ans_s;

ll S(int n) {
    if(n < N) return sum[n];
    if(ans_s.count(n)) return ans_s[n];
    ll ans = n;
    for(ll l = 2, r; l <= n; l = r + 1) {
        r = n / (n / l);
        ans = (ans - 1ll * (calc2(r) - calc2(l - 1) + mod) % mod * S(n / l) % mod + mod) % mod;
    }
    return ans_s[n] = ans;
}

int main() {
    // freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
    // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    // cout << quick_pow(2, mod - 2) << endl;
    init();
    ll n, ans = 0;
    scanf("%lld", &n);
    for(ll l = 1, r; l <= n; l = r + 1) {
        r = n / (n / l);
        ans = (ans + 1ll * calc1(n / l) * ((S(r) - S(l - 1) + mod) % mod) % mod) % mod;
    }
    printf("%lld\n", 1ll * (ans + n) * inv2 % mod);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值