#6229. 这是一道简单的数学题
推式子
∑ i = 1 n ∑ j = 1 i l c m ( i , j ) g c d ( i , j ) = ( ∑ i = 1 n ∑ j = 1 n l c m ( i , j ) g c d ( i , j ) + n ) ∗ i n v 2 所 以 重 点 求 ∑ i = 1 n ∑ j = 1 n l c m ( i , j ) g c d ( i , j ) = ∑ i = 1 n ∑ j = 1 n i j g c d ( i , j ) 2 = ∑ d = 1 n ∑ i = 1 n d ∑ j = 1 n d i j ( g c d ( i , j ) = = 1 ) = ∑ d = 1 n ∑ k = 1 n d μ ( k ) k 2 ( ∑ i = 1 n k d i ) 2 我 们 另 t = k d , 得 到 ∑ t = 1 n ( ∑ i = 1 n t i ) 2 ∑ k ∣ t μ ( k ) k 2 接 下 来 就 是 考 虑 如 何 在 非 线 性 的 时 间 内 筛 选 出 ∑ k ∣ t μ ( k ) k 2 的 前 缀 和 来 我 们 设 f ( n ) = ( μ i d 2 ∗ I ) ( n ) , 也 就 是 ∑ k ∣ t μ ( k ) k 2 的 卷 积 形 式 。 g ( n ) = i d 2 , 显 然 有 f ( n ) ∗ g ( n ) = μ i d 2 ∗ I ∗ i d 2 μ i d 2 ∗ i d 2 = ∑ d ∣ n μ ( d ) d 2 ( n d ) 2 = n 2 ϵ = ϵ 所 以 有 f ( n ) ∗ g ( n ) = I 套 进 杜 教 筛 里 面 去 得 到 S ( n ) = ∑ i = 1 n I − ∑ d = 2 n d 2 S ( n d ) \sum_{i = 1} ^{n} \sum_{j = 1} ^{i} \frac{lcm(i, j)}{gcd(i, j)}\\ = (\sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \frac{lcm(i, j)}{gcd(i, j)} + n) * inv2\\ 所以重点求\sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \frac{lcm(i, j)}{gcd(i, j)}\\ = \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \frac{ij}{gcd(i, j) ^ 2}\\ = \sum_{d = 1} ^{n} \sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{\frac{n}{d}}ij (gcd(i, j) == 1)\\ = \sum_{d = 1} ^{n} \sum_{k = 1} ^{\frac{n}{d}} \mu(k) k ^ 2 (\sum_{i = 1} ^{\frac{n}{kd}} i) ^ 2\\ 我们另t = kd,得到\\ \sum_{t = 1} ^{n} (\sum_{i = 1} ^{\frac{n}{t}}i) ^ 2 \sum_{k \mid t} \mu(k) k ^ 2\\ 接下来就是考虑如何在非线性的时间内筛选出\sum_{k \mid t} \mu(k) k ^ 2的前缀和来\\ 我们设f(n) = (\mu\ id ^ 2 * I)(n),也就是\sum_{k \mid t} \mu(k) k ^ 2的卷积形式。\\ g(n) = id ^ 2, 显然有f(n) * g(n) = \mu\ id ^ 2 * I * id ^ 2\\ \mu\ id ^ 2 * id ^ 2 = \sum_{d \mid n} \mu(d) d ^ 2 (\frac{n}{d}) ^ 2 = n ^ 2\epsilon = \epsilon\\ 所以有f(n) * g(n) = I\\ 套进杜教筛里面去得到S(n) = \sum_{i = 1} ^{n} I - \sum_{d = 2} ^{n} d ^ 2S(\frac{n}{d})\\ i=1∑nj=1∑igcd(i,j)lcm(i,j)=(i=1∑nj=1∑ngcd(i,j)lcm(i,j)+n)∗inv2所以重点求i=1∑nj=1∑ngcd(i,j)lcm(i,j)=i=1∑nj=1∑ngcd(i,j)2ij=d=1∑ni=1∑dnj=1∑dnij(gcd(i,j)==1)=d=1∑nk=1∑dnμ(k)k2(i=1∑kdni)2我们另t=kd,得到t=1∑n(i=1∑tni)2k∣t∑μ(k)k2接下来就是考虑如何在非线性的时间内筛选出k∣t∑μ(k)k2的前缀和来我们设f(n)=(μ id2∗I)(n),也就是k∣t∑μ(k)k2的卷积形式。g(n)=id2,显然有f(n)∗g(n)=μ id2∗I∗id2μ id2∗id2=d∣n∑μ(d)d2(dn)2=n2ϵ=ϵ所以有f(n)∗g(n)=I套进杜教筛里面去得到S(n)=i=1∑nI−d=2∑nd2S(dn)
代码
/*
Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define endl "\n"
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const double eps = 1e-7;
const int mod = 1e9 + 7, N = 1e6 + 10, inv6 = 166666668, inv2 = 500000004;
int prime[N], mu[N], cnt;
ll sum[N];
bool st[N];
ll quick_pow(ll a, int n) {
ll ans = 1;
while(n) {
if(n & 1) ans = ans * a % mod;
a = a * a % mod;
n >>= 1;
}
return ans;
}
void init() {
mu[1] = 1;
for(int i = 2; i < N; i++) {
if(!st[i]) {
prime[cnt++] = i;
mu[i] = -1;
}
for(int j = 0; j < cnt && i * prime[j] < N; j++) {
st[i * prime[j]] = 1;
if(i % prime[j] == 0) break;
mu[i * prime[j]] = -mu[i];
}
}
for(int i = 1; i < N; i++) {
for(int j = i; j < N; j += i) {
sum[j] = (sum[j] + 1ll * i * i % mod * mu[i] % mod + mod) % mod;
}
}
for(int i = 1; i < N; i++) {
sum[i] = (sum[i] + sum[i - 1]) % mod;
}
}
ll calc1(ll n) {
ll ans = 1ll * (1 + n) * n / 2 % mod;
return 1ll * ans * ans % mod;
}
ll calc2(ll n) {
return 1ll * n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod;
}
unordered_map<int, int> ans_s;
ll S(int n) {
if(n < N) return sum[n];
if(ans_s.count(n)) return ans_s[n];
ll ans = n;
for(ll l = 2, r; l <= n; l = r + 1) {
r = n / (n / l);
ans = (ans - 1ll * (calc2(r) - calc2(l - 1) + mod) % mod * S(n / l) % mod + mod) % mod;
}
return ans_s[n] = ans;
}
int main() {
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
// cout << quick_pow(2, mod - 2) << endl;
init();
ll n, ans = 0;
scanf("%lld", &n);
for(ll l = 1, r; l <= n; l = r + 1) {
r = n / (n / l);
ans = (ans + 1ll * calc1(n / l) * ((S(r) - S(l - 1) + mod) % mod) % mod) % mod;
}
printf("%lld\n", 1ll * (ans + n) * inv2 % mod);
return 0;
}