[SDOI2017]数字表格

[SDOI2017]数字表格

假 定 n < = m ∏ i = 1 n ∏ j = 1 m f ( g c d ( i , j ) ) ∏ d = 1 n f ( d ) ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = d ] ∏ d = 1 n f ( d ) ∑ i = 1 n d ∑ j = 1 m d [ g c d ( i , j ) = 1 ] ∏ d = 1 n f ( d ) ∑ k = 1 n d μ ( k ) n k d m k d 由 于 n d 具 有 分 块 性 质 , 并 且 n , m 不 大 , 所 以 我 们 可 以 先 预 处 理 出 斐 波 那 契 数 列 的 前 缀 积 , 然 后 进 行 数 论 分 块 即 可 。 注 意 因 为 ∑ k = 1 n d μ ( k ) n k d m k d 是 指 数 形 式 , 所 以 我 们 要 对 其 模 上 ( m o d − 1 ) 假定n <= m\\ \prod_{i = 1} ^{n} \prod_{j = 1} ^{m} f(gcd(i, j))\\ \prod_{d = 1} ^{n} f(d) ^{\sum\limits_{i = 1} ^{n} \sum\limits_{j = 1} ^{m} [gcd(i, j) = d]}\\ \prod_{d = 1} ^{n} f(d) ^{\sum\limits_{i = 1} ^{\frac{n}{d}} \sum\limits_{j = 1} ^{\frac{m}{d}}[gcd(i, j) = 1]}\\ \prod_{d = 1} ^{n} f(d) ^{\sum\limits_{k = 1} ^{\frac{n}{d}} \mu(k) \frac{n}{kd} \frac{m}{kd}}\\ 由于\frac{n}{d}具有分块性质,并且n,m不大,所以我们可以先预处理出斐波那契数列的前缀积,然后进行数论分块即可。\\ 注意因为\sum\limits_{k = 1} ^{\frac{n}{d}} \mu(k) \frac{n}{kd} \frac{m}{kd}是指数形式,所以我们要对其模上(mod - 1) n<=mi=1nj=1mf(gcd(i,j))d=1nf(d)i=1nj=1m[gcd(i,j)=d]d=1nf(d)i=1dnj=1dm[gcd(i,j)=1]d=1nf(d)k=1dnμ(k)kdnkdmdnnmk=1dnμ(k)kdnkdm(mod1)

交了一发发现 T L E TLE TLE了, O ( n ) O(n) O(n)的复杂度确实过不了极限数据,,,继续推式子。
T = i d ∏ T = 1 n ∏ d ∣ T f ( d ) n T m T μ ( T d ) 舍 去 n T m T 的 干 扰 ∏ T = 1 n ( ∏ d ∣ T f ( d ) μ ( T d ) ) n T m T 所 以 我 们 只 要 预 先 处 理 出 ∏ d ∣ T f ( d ) μ ( T d ) , 就 能 n 进 行 求 解 了 。 T = id\\ \prod_{T = 1} ^{n} \prod_{d \mid T} f(d)^{\frac{n}{T} \frac{m}{T} \mu(\frac{T}{d})}\\ 舍去\frac{n}{T} \frac{m}{T}的干扰\\ \prod_{T = 1} ^{n}\left(\prod_{d \mid T} f(d) ^{\mu(\frac{T}{d})} \right) ^{\frac{n}{T} \frac{m}{T}}\\ 所以我们只要预先处理出\prod_{d \mid T} f(d) ^{\mu(\frac{T}{d})},就能\sqrt n 进行求解了。 T=idT=1ndTf(d)TnTmμ(dT)TnTmT=1ndTf(d)μ(dT)TnTmdTf(d)μ(dT)n

/*
  Author : lifehappy
*/
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int N = 1e6 + 10, mod = 1e9 + 7, Mod = mod - 1;

ll prime[N], mu[N], fib[N], phi[N], inv_fib[N], f[N], cnt;

bool st[N];

ll quick_pow(ll a, int n) {
    ll ans = 1;
    while(n) {
        if(n & 1) ans = ans * a % mod;
        a = a * a % mod;
        n >>= 1;
    }
    return ans;
}

ll inv(ll a) {
    return quick_pow(a, mod - 2);
}

void init() {
    fib[1] = mu[1] = f[1] = 1;
    for(int i = 2; i < N; i++) {
        f[i] = 1;
        fib[i] = (fib[i - 1] + fib[i - 2]) % mod;
        if(!st[i]) {
            prime[++cnt] = i;
            mu[i] = -1;
        }
        for(int j = 1; j <= cnt && 1ll * i * prime[j] < N; j++) {
            st[i * prime[j]] = 1;
            if(i % prime[j] == 0) {
                break;
            }
            mu[i * prime[j]] = -mu[i];
        }
    }
    for(int i = 1; i < N; i++) {
        inv_fib[i] = inv(fib[i]);
    }
    for(int i = 1; i < N; i++) {
        for(int j = i; j < N; j += i) {
            if(mu[j / i] == 1) {
                f[j] = f[j] * fib[i] % mod;
            }
            else if(mu[j / i] == -1) {
                f[j] = f[j] * inv_fib[i] % mod;
            }
        }
    }
    f[0] = 1;
    for(int i = 1; i < N; i++) {
        f[i] = f[i] * f[i - 1] % mod;
    }
}

int main() {
    // freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
    // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    init();
    int T;
    scanf("%d", &T);
    while(T--) {
        int n, m;
        scanf("%d %d", &n, &m);
        if(n > m) swap(n, m);
        ll ans = 1;
        for(int l = 1, r; l <= n; l = r + 1) {
            r = min(n / (n / l), m / (m / l));
            ans = ans * quick_pow(f[r] * inv(f[l - 1]) % mod, 1ll * (n / l) * (m / l) % Mod) % mod;
        }
        printf("%lld\n", ans);
    }
	return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值