【莫比乌斯反演】[SDOI2017]数字表格

原题链接

P3704 [SDOI2017]数字表格

题目大意

求:

∏ i = 1 n ∏ j = 1 m f gcd ⁡ ( i , j ) \large \prod\limits_{i=1}^n\prod\limits_{j=1}^mf_{\gcd(i,j)} i=1nj=1mfgcd(i,j)

其中 f x f_x fx 表示斐波那契数列的第 x x x 项, f 0 = 0 , f 1 = 1 f_0=0,f_1=1 f0=0,f1=1

题解

gcd ⁡ ( i , j ) = d \gcd(i,j)=d gcd(i,j)=d,我们直接枚举他:

∏ d = 1 n ∏ i = 1 n ∏ j = 1 m f d × [ gcd ⁡ ( i , j ) = d ] \large \prod\limits_{d=1}^n \prod\limits_{i=1}^n\prod\limits_{j=1}^m f_d\times [\gcd(i,j)=d] d=1ni=1nj=1mfd×[gcd(i,j)=d]

一个 f d f_d fd 会被乘上若干次,表示如下:

∏ d = 1 n f d ∑ i = 1 n ∑ j = 1 m [ gcd ⁡ ( i , j ) = d ] \large\prod\limits_{d=1}^n f_d^{\sum\limits_{i=1}^n\sum\limits_{j=1}^m[\gcd(i,j)=d]} d=1nfdi=1nj=1m[gcd(i,j)=d]

老套路处理一下右上角:

∏ d = 1 n f d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ gcd ⁡ ( i , j ) = 1 ] \large\prod\limits_{d=1}^n f_d^{\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}[\gcd(i,j)=1]} d=1nfdi=1dnj=1dm[gcd(i,j)=1]

接下来把右上角单独拿出来看:

∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ gcd ⁡ ( i , j ) = 1 ] \large\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}[\gcd(i,j)=1] i=1dnj=1dm[gcd(i,j)=1]

使用 [ n = 1 ] = ∑ d ∣ n μ ( d ) [n=1]=\sum\limits_{d\mid n}\mu (d) [n=1]=dnμ(d) 可得:

∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ ∑ k ∣ gcd ⁡ ( i , j ) μ ( k ) \large\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}\sum\limits_{k\mid \gcd(i,j)}\mu(k) i=1dnj=1dmkgcd(i,j)μ(k)

于是对他再改一下枚举顺序:

∑ k = 1 n μ ( k ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ k ∣ i    and    k ∣ j ] \large\sum\limits_{k=1}^n\mu(k)\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}[k\mid i\;\text{and}\;k\mid j] k=1nμ(k)i=1dnj=1dm[kiandkj]

这个时候直接去除内部的 k k k

∑ k = 1 n μ ( k ) ∑ i = 1 ⌊ n d k ⌋ ∑ j = 1 ⌊ m d k ⌋ 1 \large\sum\limits_{k=1}^n\mu(k)\sum\limits_{i=1}^{\lfloor\frac{n}{dk}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{dk}\rfloor} 1 k=1nμ(k)i=1dknj=1dkm1

所以这一大块就是:

∑ k = 1 n μ ( k ) ⌊ n d k ⌋ ⌊ m d k ⌋ \large\sum\limits_{k=1}^n\mu(k)\left\lfloor\dfrac{n}{dk}\right\rfloor\left\lfloor\dfrac{m}{dk}\right\rfloor k=1nμ(k)dkndkm

把他放回原式:

∏ d = 1 n f d ∑ k = 1 n μ ( k ) ⌊ n d k ⌋ ⌊ m d k ⌋ \large\prod\limits_{d=1}^n f_d^{\sum\limits_{k=1}^n\mu(k)\left\lfloor\frac{n}{dk}\right\rfloor\left\lfloor\frac{m}{dk}\right\rfloor} d=1nfdk=1nμ(k)dkndkm

k ′ = k d k^\prime=kd k=kd,并且提出来:

∏ k = 1 n ( ∏ d ∣ k f d μ ( k d ) ) ⌊ n k ⌋ ⌊ m k ⌋ \large\prod\limits_{k=1}^n\left(\prod\limits_{d\mid k}f_d^{\mu(\frac{k}{d})}\right)^{\left\lfloor\frac{n}{k}\right\rfloor\left\lfloor\frac{m}{k}\right\rfloor} k=1n dkfdμ(dk) knkm

括号内 O ( n log ⁡ n ) \mathcal{O}(n\log n) O(nlogn) 预处理,外部 O ( n ) \mathcal{O}(\sqrt{n}) O(n ) 解决。此外,由欧拉定理得:

a ⌊ n k ⌋ ⌊ m k ⌋ ≡ a ⌊ n k ⌋ ⌊ m k ⌋   m o d   φ ( m ) ( m o d m ) \large a^{\left\lfloor\frac{n}{k}\right\rfloor\left\lfloor\frac{m}{k}\right\rfloor}\equiv a^{\left\lfloor\frac{n}{k}\right\rfloor\left\lfloor\frac{m}{k}\right\rfloor\bmod \varphi(m)}\pmod m aknkmaknkmmodφ(m)(modm)

于是我们可以把指数又缩小一点。

代码

//你 cnt=1 了吗?
#include<bits/stdc++.h>
#define int long long
#define mid ((l+r)>>1)
#define fir first
#define sec second
#define lowbit(i) (i&(-i))
using namespace std;
const int N=1e6+5;
const int inf=1e18;
struct edge{int to,nxt,l;};
inline int read(){
    char op=getchar();
    int w=0,s=1;
    while(op<'0'||op>'9'){
        if(op=='-') s=-1;
        op=getchar();
    }
    while(op>='0'&&op<='9'){
        w=(w<<1)+(w<<3)+op-'0';
        op=getchar();
    }
    return w*s;
}
//数论部分
const double pi=acos(-1);
const int mod=1e9+7;
int Mul(int a,int b){return (a*b)%mod;}
int Add(int a,int b){return (a+b)%mod;}
int Dec(int a,int b){return (a-b+mod)%mod;}
int Pow(int a,int k){
    int ans=1;
    while(k){
        if(k&1) ans=Mul(ans,a);
        a=Mul(a,a);
        k>>=1;
    }
    return ans;
}
int gcd(int x,int y){return y==0?x:gcd(y,x%y);}
int lcm(int x,int y){return x/gcd(x,y)*y;}
int inv(int x){return Pow(x,mod-2);}
void exgcd(int a,int b,int &x,int &y){
    if(b==0){
        x=1,y=0;
        return;
    }
    exgcd(b,a%b,x,y);
    int t=x;
    x=y;
    y=t-a/b*y;
}
int f[N],mu[N],invf[N],vis[N],p[N],cnt=0,ans[N];
void prework(){
    int n=N-5;
    f[0]=0,f[1]=1,mu[1]=1;
    for(register int i=2;i<=n;i++) f[i]=Add(f[i-1],f[i-2]);
    for(register int i=0;i<=n;i++) invf[i]=inv(f[i]),ans[i]=1;
    for(register int i=2;i<=n;i++){
        if(!vis[i]){
            p[++cnt]=i;
            mu[i]=-1;
        }
        for(register int j=1;j<=cnt&&p[j]*i<=n;j++){
            vis[i*p[j]]=1;
            if(i%p[j]==0){
                mu[i*p[j]]=0;
                break;
            }
            mu[i*p[j]]=-mu[i];
        }
    }
    for(register int i=1;i<=n;i++){
        for(register int j=i;j<=n;j+=i){
            if(mu[j/i]==1) ans[j]=Mul(ans[j],f[i]);
            if(mu[j/i]==-1) ans[j]=Mul(ans[j],invf[i]);
        }
    }
    for(register int i=1;i<=n;i++) ans[i]=Mul(ans[i-1],ans[i]);
}
int Sqrt(int n,int m){
    int tot=1;
    for(register int l=1,r;l<=min(n,m);l=r+1){
        r=min(n/(n/l),m/(m/l));
        tot=Mul(tot,Pow(Mul(ans[r],inv(ans[l-1])),(n/l)*(m/l)%(mod-1)));
    }
    return tot;
}
signed main(){
    int T=read();
    prework();
    while(T--){
        int n=read(),m=read();
        printf("%lld\n",(Sqrt(n,m)+mod)%mod);
    }
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值