生成函数简单入门

生成函数

可表示为 F ( x ) = ∑ n a n k n ( x ) F(x) = \sum\limits_{n} a_n k_n(x) F(x)=nankn(x),对于不同类型的生成函数,有不同的核函数 k n ( x ) k_n(x) kn(x)

普通生成函数: k n ( x ) = x n k_n(x) = x ^ n kn(x)=xn

指数生成函数: k n ( x ) = x n n ! k_n(x) = \frac{x ^ n}{n !} kn(x)=n!xn

迪利克雷生成函数: k n ( x ) = 1 n x k_n(x) = \frac{1}{n ^ x} kn(x)=nx1

普通生成函数

封闭形式

在运用生成函数的过程中,我们不会一直使用形式幂级数的形式,而会适时地转化为封闭形式以更好地化简。

对于 < 1 , 1 , 1 , ⋯ > <1, 1, 1, \dots> <1,1,1,>的普通生成函数 F ( x ) = ∑ 0 ≤ n x n F(x) = \sum\limits_{0 \leq n} x ^ n F(x)=0nxn F ( x ) x + 1 = F ( x ) F(x)x + 1 = F(x) F(x)x+1=F(x) F ( x ) = 1 1 − x F(x) = \frac{1}{1 - x} F(x)=1x1

一些函数的封闭形式化简

< 1 , p , p 2 , p 3 , p 4 , ⋯ > <1, p, p ^ 2, p ^ 3, p ^ 4, \dots> <1,p,p2,p3,p4,>

F ( x ) = ∑ n ≥ 0 p n x n , F ( x ) p x + x = F ( x ) , F ( x ) = x 1 − p x F(x) = \sum\limits_{n \geq 0} p ^ n x ^ n, F(x) px + x = F(x), F(x) = \frac{x}{1 - px} F(x)=n0pnxn,F(x)px+x=F(x),F(x)=1pxx

< 0 , 1 , 1 , 1 , 1 , ⋯ > <0, 1, 1, 1, 1, \dots> <0,1,1,1,1,>

F ( x ) = ∑ n ≥ 1 x n , x F ( x ) + x = F ( x ) , F ( x ) = x 1 − x F(x) = \sum\limits_{n \geq 1} x ^ n,xF(x) + x = F(x), F(x) = \frac{x}{1 - x} F(x)=n1xn,xF(x)+x=F(x),F(x)=1xx

< 1 , 0 , 1 , 0 , 1 , ⋯ > <1, 0, 1, 0, 1, \dots> <1,0,1,0,1,>

F ( x ) = ∑ n ≥ 0 x 2 n , F ( x ) x 2 + 1 = F ( x ) , F ( x ) = 1 1 − x 2 F(x) = \sum\limits_{n \geq 0} x ^ {2n}, F(x)x ^ 2 + 1 = F(x), F(x) = \frac{1}{1 - x ^ 2} F(x)=n0x2n,F(x)x2+1=F(x),F(x)=1x21

< 1 , 2 , 3 , 4 , 5 , ⋯ > <1, 2, 3, 4, 5, \dots> <1,2,3,4,5,>

F ( x ) = ∑ n ≥ 0 ( n + 1 ) x n , F ( x ) − x F ( x ) = ∑ n ≥ 0 x n = 1 1 − x , F ( x ) = 1 ( 1 − x ) 2 F(x) = \sum\limits_{n \geq 0} (n + 1) x ^ n, F(x) - xF(x) = \sum\limits_{n \geq 0} x ^ n = \frac{1}{1 - x}, F(x) = \frac{1}{(1 - x) ^ 2} F(x)=n0(n+1)xn,F(x)xF(x)=n0xn=1x1,F(x)=(1x)21

a n = ( n m ) ( m 是 常 数 , n ≥ 0 ) a_n = (_n ^ m)(m是常数,n \geq 0) an=(nm)(mn0)

F ( x ) = ∑ n ≥ 0 C m n x n , 二 项 式 定 理 有 F ( x ) = ( 1 + x ) m F(x) = \sum\limits_{n \geq 0} C_m ^n x ^ n, 二项式定理有F(x) = (1 + x) ^ m F(x)=n0Cmnxn,F(x)=(1+x)m

a n = ( n n + m ) ( m 是 常 数 , n ≥ 0 ) a_n = (_n ^{n + m})(m是常数,n \geq 0) an=(nn+m)(mn0)

F ( x ) = ∑ n ≥ 0 C n + m n x n , F ( x ) = 1 ( 1 − x ) m + 1 F(x) = \sum\limits_{n \geq 0} C_{n + m} ^{n} x ^ n, F(x) = \frac{1}{(1 - x) ^{m + 1}} F(x)=n0Cn+mnxn,F(x)=(1x)m+11

斐波那契数列生成函数

F ( x ) = a 0 + a 1 x + a 2 x 2 + … x F ( x ) = a 0 x + a 1 x 2 + a 2 x 3 + … x 2 F ( x ) = a 0 x 2 + a 1 x 3 + a 2 x 4 + … F ( x ) = x F ( x ) + x 2 F ( x ) + a 0 F ( x ) = 1 1 − x − x 2 求 解 1 − x − x 2 = ( 1 − a x ) ( 1 − b x ) , 得 到 a = 1 + 5 2 , b = 1 − 5 2 F ( x ) = 1 1 − x − x 2 = A 1 − a x + B 1 − b x 解 得 A = 1 n a , B = − 1 5 b 有 F ( x ) = a 5 1 1 − a x − b 5 B 1 − b x 由 ∑ n ≥ 0 C n + m n x n = 1 ( 1 − x ) m + 1 可 解 得 斐 波 那 契 生 成 函 数 的 第 n 项 系 数 , a n = a 5 a n − b 5 b n a n = 1 5 ( ( 1 + 5 2 ) n + 1 − ( 1 − 5 2 ) n + 1 ) F(x) = a_0 + a_1x + a_2 x ^ 2 + \dots\\ xF(x) = a_0x + a_1x ^ 2 + a_2 x ^ 3 + \dots\\ x ^ 2 F(x) = a_0 x ^ 2 + a_1 x ^ 3 + a_2 x ^ 4 + \dots\\ F(x) = xF(x) + x ^ 2 F(x) + a_0\\ F(x) = \frac{1}{1 - x - x ^ 2}\\ 求解1 - x - x ^ 2 = (1 - ax)(1 - bx),得到a = \frac{1 + \sqrt 5}{2}, b = \frac{1 - \sqrt 5}{2}\\ F(x) = \frac{1}{1 - x - x ^ 2} = \frac{A}{1 - ax} + \frac{B}{1 - bx}\\ 解得A = \frac{1}{\sqrt n} a, B = -\frac{1}{\sqrt 5}b\\ 有F(x) = \frac{a}{\sqrt 5} \frac{1}{1 - ax} - \frac{b}{\sqrt 5} \frac{B}{1 - bx}\\ 由\sum\limits_{n \geq 0} C_{n + m} ^{n} x ^ n = \frac{1}{(1 - x) ^{m + 1}}\\ 可解得斐波那契生成函数的第n项系数,a_n = \frac{a}{\sqrt 5} a ^ n - \frac{b}{\sqrt 5} b ^ n\\ a_n = \frac{1}{\sqrt 5}((\frac{1 + \sqrt 5}{2}) ^ {n + 1} - (\frac{1 - \sqrt 5}{2}) ^{n + 1})\\ F(x)=a0+a1x+a2x2+xF(x)=a0x+a1x2+a2x3+x2F(x)=a0x2+a1x3+a2x4+F(x)=xF(x)+x2F(x)+a0F(x)=1xx211xx2=(1ax)(1bx)a=21+5 ,b=215 F(x)=1xx21=1axA+1bxBA=n 1a,B=5 1bF(x)=5 a1ax15 b1bxBn0Cn+mnxn=(1x)m+11nan=5 aan5 bbnan=5 1((21+5 )n+1(215 )n+1)

一道生成函数模板题

由题意可列出式子
∑ n ≥ 0 x 6 n = 1 1 − x 6 ∑ n ≥ 0 9 x n = x 10 − 1 x − 1 ∑ n ≥ 0 5 x n = x 6 − 1 x − 1 ∑ n ≥ 0 x 4 n = 1 1 − x 4 ∑ n ≥ 0 7 = x 8 − 1 x − 1 ∑ n ≥ 0 x 2 n = 1 1 − x 2 ∑ n ≥ 0 1 x n = x 2 − 1 x − 1 ∑ n ≥ 0 x 8 n = 1 1 − x 8 ∑ n ≥ 0 x 10 n = 1 1 − x 10 ∑ n ≥ 0 3 = x 4 − 1 x − 1 全 部 乘 起 来 得 到 1 ( 1 − x ) 5 得 到 第 n 项 为 C n + 4 n = C n + 4 4 \sum_{n \geq 0} x ^ {6n} = \frac{1}{1 - x ^ 6}\\ \sum_{n \geq 0} ^{9} x ^ n = \frac{x ^ {10} - 1}{x - 1}\\ \sum_{n \geq 0} ^{5} x ^ n = \frac{x ^ 6 - 1}{x - 1}\\ \sum_{n \geq 0} x ^{4n} = \frac{1}{1 - x ^ 4}\\ \sum_{n \geq 0} ^{7} = \frac{x ^ 8 - 1}{x - 1}\\ \sum_{n \geq 0} x ^{2n} = \frac{1}{1 - x ^ 2}\\ \sum_{n \geq 0} ^{1} x ^ n = \frac{x ^ 2 - 1}{x - 1}\\ \sum_{n \geq 0} x ^{8n} = \frac{1}{1 - x ^ 8}\\ \sum_{n \geq 0} x ^{10 n} = \frac{1}{1 - x ^{10}}\\ \sum_{n \geq 0} ^{3} = \frac{x ^ 4 - 1}{x - 1}\\ 全部乘起来得到\frac{1}{(1 - x) ^ 5}\\ 得到第n项为C_{n + 4} ^{n} = C_{n + 4} ^{4}\\ n0x6n=1x61n09xn=x1x101n05xn=x1x61n0x4n=1x41n07=x1x81n0x2n=1x21n01xn=x1x21n0x8n=1x81n0x10n=1x101n03=x1x41(1x)51nCn+4n=Cn+44

#3027. [Ceoi2004]Sweet

题目就是要我们求:
F ( x ) = ∏ i = 1 n 1 − x m i + 1 1 − x F ( x ) ( 1 − x ) n = ∏ i = 1 n 1 − x m i + 1 F(x) = \prod_{i = 1} ^{n} \frac{1 - x ^{m_i + 1}}{1 - x}\\ F(x) (1 - x) ^ n = \prod_{i = 1} ^{n} 1 - x ^{m_i + 1}\\ F(x)=i=1n1x1xmi+1F(x)(1x)n=i=1n1xmi+1
只需要暴力展开左右两边,枚举系数即可求得,


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值