生成函数

简介

生成函数用于解决以下问题:给定数列前几项和递推关系,求数列通项。
定义一个数列 a = a 0 , a 1 , a 2 , . . . a={a_0,a_1,a_2,...} a=a0,a1,a2,...的生成函数为 f ( x ) = ∑ n ≥ 0 a i x i f(x)=\sum_{n\ge0}a_ix^i f(x)=n0aixi
显然,函数 f ( x ) f(x) f(x) x i x^i xi的系数就是数列的第 i i i项。生成函数的思想就是利用多项式运算求得 f ( x ) f(x) f(x)系数的通项公式,即数列的通项公式。

封闭形式

设无穷幂级数 f ( x ) = 1 + x + x 2 + . . . f(x)=1+x+x^2+... f(x)=1+x+x2+...,则有 f ( x ) = x f ( x ) + 1 f(x)=xf(x)+1 f(x)=xf(x)+1,得 f ( x ) = 1 1 − x f(x)=\frac{1}{1-x} f(x)=1x1 1 1 − x \frac{1}{1-x} 1x1就称为 f ( x ) f(x) f(x)的封闭形式,引用封闭形式可以简化生成函数的四则运算。
例:
f ( x ) = x + x 3 + . . . = > f ( x ) = x 2 f ( x ) + x = > f ( x ) = x 1 − x 2 f(x)=x+x^3+...=>f(x)=x^2f(x)+x=>f(x)=\frac{x}{1-x^2} f(x)=x+x3+...=>f(x)=x2f(x)+x=>f(x)=1x2x
f ( x ) = 1 + 2 x + 3 x 2 + . . . = ( 1 + x + . . . ) ′ = ( 1 1 − x ) ′ = 1 ( 1 − x ) 2 f(x)=1+2x+3x^2+...=(1+x+...)'=(\frac{1}{1-x})'=\frac{1}{(1-x)^2} f(x)=1+2x+3x2+...=(1+x+...)=(1x1)=(1x)21

牛顿二项式定理

定义 r r r为实数, c c c为非负整数的组合数公式: ( r c ) = r ( r − 1 ) . . . ( r − c + 1 ) c ! {r\choose c}=\frac{r(r-1)...(r-c+1)}{c!} (cr)=c!r(r1)...(rc+1)
( 1 + x ) r = ∑ n ≥ 0 ( r n ) x n (1+x)^r=\sum_{n\ge0}{r\choose n}x^n (1+x)r=n0(nr)xn
常用公式:
( 1 − x ) − m = 1 ( 1 − x ) m = ∑ n = 0 ∞ C m + n − 1 n x n ( 1 + x ) − m = 1 ( 1 + x ) m = ∑ n = 0 ∞ ( − 1 ) n C m + n − 1 n x n ( 1 − x ) − 1 = 1 x − 1 = ∑ n = 0 ∞ x n ( 1 − x ) − 2 = 1 ( 1 − x ) 2 = ∑ n = 0 ∞ ( n + 1 ) x n ( 1 + x ) 1 2 = 1 + ∑ n = 1 ∞ ( − 1 ) n − 1 2 2 n − 1 n C 2 n − 2 n − 1 x n (1-x)^{-m}=\frac{1}{(1-x)^m}=\sum_{n=0}^{\infty}C_{m+n-1}^nx^n\\(1+x)^{-m}=\frac{1}{(1+x)^m}=\sum_{n=0}^{\infty}(-1)^nC_{m+n-1}^nx^n\\ (1-x)^{-1}=\frac{1}{x-1}=\sum\limits_{n=0}^{\infty}x^n\\ (1-x)^{-2}=\frac{1}{(1-x)^2}=\sum\limits_{n=0}^{\infty}(n+1)x^n\\ (1+x)^{\frac{1}{2}}=1+\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{2^{2n-1}n}C_{2n-2}^{n-1}x^n (1x)m=(1x)m1=n=0Cm+n1nxn(1+x)m=(1+x)m1=n=0(1)nCm+n1nxn(1x)1=x11=n=0xn(1x)2=(1x)21=n=0(n+1)xn(1+x)21=1+n=122n1n(1)n1C2n2n1xn

斐波拉契的生成函数

定义斐波拉契数列: a 0 = 0 , a 1 = 1 , a i = a i − 1 + a i − 2 ( i ≥ 2 ) a_0=0,a_1=1,a_i=a_{i-1}+a_{i-2}(i\ge 2) a0=0,a1=1,ai=ai1+ai2(i2)
其生成函数为 f ( x ) = a 0 + a 1 x + a 2 x 2 + . . . f(x)=a_0+a_1x+a_2x^2+... f(x)=a0+a1x+a2x2+...
f ( x ) = x f ( x ) + x 2 f ( x ) − a 0 x + a 0 + a 1 x f(x)=xf(x)+x^2f(x)-a_0x+a_0+a_1x f(x)=xf(x)+x2f(x)a0x+a0+a1x
f ( x ) = x 1 − x − x 2 f(x)=\frac{x}{1-x-x^2} f(x)=1xx2x,得出其封闭形式,对其封闭形式进行展开后,即可得到斐波拉契数列的通项公式。
展开方式一:
只需展开 g ( x ) = 1 1 − x − x 2 g(x)=\frac{1}{1-x-x^2} g(x)=1xx21,再对展开结果乘一个 x x x即可。
g ( x ) = ∑ n ≥ 0 ( x + x 2 ) n = ∑ n ≥ 0 ∑ i = 0 ( n i ) x n − i x 2 i = ∑ n ≥ 0 ∑ i = 0 ( n i ) x n + i = ∑ n ≥ 0 x n ∑ i = 0 n ( n − i i ) g(x)=\sum_{n\ge0}(x+x^2)^n=\sum_{n\ge0}\sum_{i=0}{n\choose i}x^{n-i}x^{2i}=\sum_{n\ge0}\sum_{i=0}{n\choose i}x^{n+i}=\sum_{n\ge0}x^n\sum_{i=0}^n{n-i\choose i} g(x)=n0(x+x2)n=n0i=0(in)xnix2i=n0i=0(in)xn+i=n0xni=0n(ini)
f ( x ) = x g ( x ) = ∑ n ≥ 1 x n ∑ i = 0 n − 1 ( n − 1 − i i ) f(x)=xg(x)=\sum_{n\ge1}x^n\sum_{i=0}^{n-1}{n-1-i\choose i} f(x)=xg(x)=n1xni=0n1(in1i)

展开方式二:
A 1 + a x + B 1 + b x = x 1 − x − x 2 \frac{A}{1+ax}+\frac{B}{1+bx}=\frac{x}{1-x-x^2} 1+axA+1+bxB=1xx2x。解得:
{ a = 1 + 5 2 b = 1 − 5 2 A = 1 5 B = − 1 5 \begin{cases}a=\frac{1+\sqrt 5}{2}\\b=\frac{1-\sqrt 5}{2}\\A=\frac{1}{\sqrt 5}\\B=-\frac{1}{\sqrt 5}\end{cases} a=21+5 b=215 A=5 1B=5 1
展开求和得 x 1 − x − x 2 = ∑ n ≥ 0 x n 1 5 ( ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ) \frac{x}{1-x-x^2}=\sum_{n\ge0}x^n\frac{1}{\sqrt 5}((\frac{1+\sqrt 5}{2})^n-(\frac{1-\sqrt 5}{2})^n) 1xx2x=n0xn5 1((21+5 )n(215 )n).

卡特兰数的生成函数

卡特兰数为 a 0 = 1 , a n = ∑ i = 0 n − 1 a i a n − 1 − i a_0=1,a_n=\sum_{i=0}^{n-1}a_ia_{n-1-i} a0=1,an=i=0n1aian1i
其生成函数为 f ( x ) = ∑ n ≥ 0 a n x n f(x)=\sum_{n\ge0}a_nx^n f(x)=n0anxn
f ( x ) = 1 + ∑ n ≥ 1 ∑ i = 0 n − 1 ( a i x i ) ( a n − 1 − i x n − 1 − i ) x f(x)=1+\sum_{n\ge1}\sum_{i=0}^{n-1}(a_ix^i)(a_{n-1-i}x^{n-1-i})x f(x)=1+n1i=0n1(aixi)(an1ixn1i)x
f ( x ) = 1 + ∑ n ≥ 1 ∑ i = 0 n − 1 f ( i ) f ( n − 1 − i ) x f(x)=1+\sum_{n\ge1}\sum_{i=0}^{n-1}f(i)f(n-1-i)x f(x)=1+n1i=0n1f(i)f(n1i)x
f ( x ) = 1 + x ∑ i ≥ 0 f ( i ) ∑ j ≥ 0 f ( j ) = 1 + x f 2 ( x ) f(x)=1+x\sum_{i\ge0}f(i)\sum_{j\ge0}f(j)=1+xf^2(x) f(x)=1+xi0f(i)j0f(j)=1+xf2(x)
解得 f ( x ) = 1 ± 1 − 4 x 2 x = 2 1 ± 1 − 4 x f(x)=\frac{1\pm\sqrt{1-4x}}{2x}=\frac{2}{1\pm\sqrt{1-4x}} f(x)=2x1±14x =1±14x 2
代入 x = 0 x=0 x=0舍弃无理根得 f ( x ) = 1 − 1 − 4 x 2 x f(x)=\frac{1-\sqrt{1-4x}}{2x} f(x)=2x114x .
对于 1 − 4 x = ( 1 − 4 x ) 1 2 \sqrt{1-4x}=(1-4x)^{\frac{1}{2}} 14x =(14x)21用牛顿二项式定理进行展开。
( 1 2 n ) = 1 ( − 1 ) ( − 3 ) ( − 5 ) . . . ( − ( 2 n − 3 ) ) 2 n n ! = ( − 1 ) n − 1 1 ∗ 3 ∗ 5 ∗ . . . ∗ ( 2 n − 3 ) 2 n n ! = ( − 1 ) n − 1 ( 2 n − 2 ) ! 2 n n ! ( 2 ∗ 4 ∗ . . . ∗ ( 2 n − 2 ) = ( − 1 ) n − 1 ( 2 n − 2 ) ! 2 2 n − 1 n ! ( n − 2 ) ! ( n − 1 ) = ( 2 n − 2 n − 2 ) ( − 1 ) n − 1 2 2 n − 1 ( n − 1 ) {\frac{1}{2}\choose n}=\frac{1(-1)(-3)(-5)...(-(2n-3))}{2^nn!}=\frac{(-1)^{n-1}1*3*5*...*(2n-3)}{2^nn!}=\frac{(-1)^{n-1}(2n-2)!}{2^nn!(2*4*...*(2n-2)}=\frac{(-1)^{n-1}(2n-2)!}{2^{2n-1}n!(n-2)!(n-1)}={2n-2\choose n-2}\frac{(-1)^{n-1}}{2^{2n-1}(n-1)} (n21)=2nn!1(1)(3)(5)...((2n3))=2nn!(1)n1135...(2n3)=2nn!(24...(2n2)(1)n1(2n2)!=22n1n!(n2)!(n1)(1)n1(2n2)!=(n22n2)22n1(n1)(1)n1.
( 1 − 4 x ) 1 2 = ∑ n ≥ 0 ( 1 2 n ) ( − 4 ) n x n = ∑ n ≥ 0 ( 2 n − 2 n − 2 ) ( − 1 ) 2 n − 1 2 2 n 2 2 n − 1 ( n − 1 ) x n = 1 + ∑ n ≥ 1 ( 2 n − 2 n − 2 ) − 2 ( n − 1 ) x n (1-4x)^{\frac{1}{2}}=\sum_{n\ge0}{\frac{1}{2}\choose n}(-4)^nx^n=\sum_{n\ge0}{2n-2\choose n-2}\frac{(-1)^{2n-1}2^{2n}}{2^{2n-1}(n-1)}x^n=1+\sum_{n\ge1}{2n-2\choose n-2}\frac{-2}{(n-1)}x^n (14x)21=n0(n21)(4)nxn=n0(n22n2)22n1(n1)(1)2n122nxn=1+n1(n22n2)(n1)2xn
1 − 1 − 4 x 2 x = ∑ n ≥ 1 ( 2 n − 2 n − 2 ) ( n − 1 ) x n − 1 = ∑ n ≥ 0 ( 2 n n − 1 ) n x n = ∑ n ≥ 0 ( 2 n n ) n + 1 x n \frac{1-\sqrt{1-4x}}{2x}=\sum_{n\ge1}\frac{{2n-2\choose n-2}}{(n-1)}x^{n-1}=\sum_{n\ge0}\frac{{2n\choose n-1}}{n}x^{n}=\sum_{n\ge0}\frac{{2n\choose n}}{n+1}x^{n} 2x114x =n1(n1)(n22n2)xn1=n0n(n12n)xn=n0n+1(n2n)xn

参考资料:
https://oi-wiki.org/math/min-25/

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值