D. Steps to One(概率DP,莫比乌斯反演)

D. Steps to One

f [ i ] f[i] f[i] gcd ⁡ \gcd gcd i i i,还需要多少个数,那么有 f [ i ] = 1 + ∑ j = 1 m f [ gcd ⁡ ( i , j ) ] m f[i] = 1 + \frac{\sum\limits_{j = 1} ^{m} f[\gcd(i, j)]}{m} f[i]=1+mj=1mf[gcd(i,j)]

f [ 1 ] = 0 f[1] = 0 f[1]=0,考虑化简 ∑ j = 1 m f [ gcd ⁡ ( i , j ) ] \sum\limits_{j = 1} ^{m} f[\gcd(i, j)] j=1mf[gcd(i,j)]
∑ d ∣ i f [ d ] ∑ j = 1 m [ gcd ⁡ ( i , j ) = d ] 给 定 i , d , 求 ∑ j = 1 m [ gcd ⁡ ( i , j ) = d ] ∑ j = 1 m d [ gcd ⁡ ( i d , j ) = 1 ] ∑ k ∣ i d μ ( k ) m k d 则 原 式 为 ∑ d ∣ i f [ d ] ∑ k ∣ i d μ ( k ) m k d \sum_{d \mid i} f[d] \sum_{j = 1} ^{m}[\gcd(i, j) = d]\\ 给定i, d,求\sum_{j = 1} ^{m}[\gcd(i, j) = d]\\ \sum_{j = 1} ^{\frac{m}{d}}[\gcd(\frac{i}{d}, j) = 1]\\ \sum_{k \mid \frac{i}{d}} \mu(k) \frac{m}{kd}\\ 则原式为 \sum_{d \mid i} f[d] \sum_{k \mid \frac{i}{d}} \mu(k) \frac{m}{kd}\\ dif[d]j=1m[gcd(i,j)=d]i,dj=1m[gcd(i,j)=d]j=1dm[gcd(di,j)=1]kdiμ(k)kdmdif[d]kdiμ(k)kdm

#include <bits/stdc++.h>

using namespace std;

const int N = 1e5 + 10, mod = 1e9 + 7;

int f[N], prime[N], mu[N], m, cnt;

vector<int> fac[N];

bool st[N];

int quick_pow(int a, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      ans = 1ll * ans * a % mod;
    }
    a = 1ll * a * a % mod;
    n >>= 1;
  }
  return ans;
}

inline int inv(int a) {
  return quick_pow(a, mod - 2);
}

void init() {
  mu[1] = 1;
  for (int i = 2; i < N; i++) {
    if (!st[i]) {
      prime[++cnt] = i;
      mu[i] = mod - 1;
    }
    for (int j = 1; j <= cnt && 1ll * i * prime[j] < N; j++) {
      st[i * prime[j]] = 1;
      if (i % prime[j] == 0) {
        break;
      }
      mu[i * prime[j]] = (mod - mu[i]) % mod;
    }
  }
  for (int i = 1; i < N; i++) {
    for (int j = i; j < N; j += i) {
      fac[j].push_back(i);
    }
  }
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  init();
  scanf("%d", &m);
  int inv_m = inv(m);
  for (int i = 1; i <= m; i++) {
    for (auto &d : fac[i]) {
      if (d == i) {
        continue;
      }
      int cur = 0;
      for (auto &k : fac[i / d]) {
        cur = (cur + 1ll * mu[k] * (m / (k * d)) % mod) % mod;
      }
      f[i] = (f[i] + 1ll * f[d] * cur % mod) % mod;
    }
    f[i] = 1ll * (m + f[i]) * inv(m - m / i) % mod;
  }
  int ans = 0;
  for (int i = 1; i <= m; i++) {
    ans = (ans + f[i]) % mod;
  }
  cout << (1 + 1ll * ans * inv_m) % mod << "\n";
  return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值