2019 ICPC Asia Yinchuan Regional(9 / 13)

2019 ICPC Asia Yinchuan Regional

A - Girls Band Party(分组背包)

每个物品有两个标签,名字,颜色,当名字是设置为奖赏时会对整体加上0.1 的贡献,如果颜色符合要求时 会对整体加上 0.2 的的贡献

但是有一个限制,相同名字的只能选一次,我们的目的是要选出 5 个物品使得总价值最大,map 映射一下,然后做分组背包就好了,

定义 f [ i ] [ j ] f[i][j] f[i][j]为装了 i i i个物品,附加值是 j 10 \frac{j}{10} 10j时,最大的价值,最后再遍历一遍数组统计一下答案即可,整体复杂度 5 × 15 × n × T 5 \times 15 \times n \times T 5×15×n×T

#include <bits/stdc++.h>

using namespace std;

const int N = 1e5 + 10;

string name[N], col[N];

int power[N], f[10][20], n, tot;

vector<pair<int, int>> a[N];

map<string, int> mp, mp1;

int main() {
  ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  int T;
  cin >> T;
  while (T--) {
    cin >> n;
    memset(f, -1, sizeof f), tot = 0;
    mp1.clear(), mp.clear();
    for (int i = 1; i <= n; i++) {
      cin >> name[i] >> col[i] >> power[i];
      if (!mp.count(name[i])) {
        mp[name[i]] = ++tot;
        a[tot].clear();
      }
    }
    for (int i = 1; i <= 5; i++) {
      string str;
      cin >> str;
      mp1[str] = 1;
    }
    string b_col;
    cin >> b_col;
    for (int i = 1; i <= n; i++) {
      int cur = 0;
      if (mp1.count(name[i])) {
        cur += 1;
      }
      if (col[i] == b_col) {
        cur += 2;
      }
      a[mp[name[i]]].push_back({power[i], cur});
    }
    f[0][0] = 0;
    for (int i = 1; i <= tot; i++) {
      for (int j = 5; j >= 1; j--) {
        for (int k = 15; k >= 0; k--) {
          for (auto it : a[i]) {
            if (k >= it.second && f[j - 1][k - it.second] != -1) {
              f[j][k] = max(f[j][k], f[j - 1][k - it.second] + it.first);
            }
          }
        }
      }
    }
    int ans = 0;
    for (int i = 1; i <= 5; i++) {
      for (int j = 0; j <= 15; j++) {
        ans = max(ans, f[i][j] * (10 + j) / 10);
      }
    }
    cout << ans << "\n";
  }
  return 0;
}

B - So Easy(模拟,签到)

#include <bits/stdc++.h>

using namespace std;

const int N = 1e3 + 10;

int a[N][N], r[N], n, x, y;;

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  scanf("%d", &n);
  for (int i = 1; i <= n; i++) {
    int minn = 0x3f3f3f3f;
    for (int j = 1; j <= n; j++) {
      scanf("%d", &a[i][j]);
      if (a[i][j] == -1) {
        a[i][j] = 0x3f3f3f3f;
        x = i, y = j;
      }
      minn = min(minn, a[i][j]);
    }
    r[i] = minn;
    for (int j = 1; j <= n; j++) {
      a[i][j] -= minn;
    }
  }
  int minn = 0x3f3f3f3f;
  for (int i = 1; i <= n; i++) {
    minn = min(minn, a[i][y]);
  }
  printf("%d\n", r[x] + minn);
  return 0;
}

D - Easy Problem(莫比乌斯)

定义一个序列是 ( n , m , d ) (n, m, d) (n,m,d) - good,当且仅当 1 ≤ a i ≤ m 1 \leq a_i \leq m 1aim gcd ⁡ ( a 1 , a 2 , … , a n ) = d \gcd(a_1, a_2, \dots, a_n) = d gcd(a1,a2,,an)=d

f ( q , k ) f(q, k) f(q,k)是对于给定的 ( n , m , d ) (n, m, d) (n,m,d)序列 q q q f ( ( a 1 , a 2 , … , a n ) , k ) = ( a 1 a 2 … a n ) k f((a_1, a_2, \dots, a_n), k) = (a_1a_2 \dots a_n) ^ k f((a1,a2,,an),k)=(a1a2an)k,给定 n , m , d , k n, m, d, k n,m,d,k要求所有的 f ( q , k ) f(q, k) f(q,k)的和。
∑ a 1 = 1 m ∑ a 2 = 1 m ⋯ ∑ a n = 1 m ( a 1 a 2 … a n ) K [ gcd ⁡ ( a 1 , a 2 , … , a n ) = d ] d K n ∑ a 1 = 1 m d ∑ a 2 = 1 m d ⋯ ∑ a n = 1 m d ( a 1 a 2 … a n ) K [ gcd ⁡ ( a 1 , a 2 , … , a n ) = 1 ] d k n ∑ k = 1 m d k K n μ ( k ) ( ∑ i = 1 m k d i k ) n \sum_{a_1 = 1} ^{m} \sum_{a_2 = 1} ^{m} \dots \sum_{a_n = 1} ^{m} (a_1 a_2 \dots a_n) ^ K[\gcd(a_1, a_2, \dots, a_n) = d]\\ d ^ {K n} \sum_{a_1 = 1} ^{\frac{m}{d}} \sum_{a_2 = 1} ^{\frac{m}{d}} \dots \sum_{a_n = 1} ^{\frac{m}{d}}(a_1a_2\dots a_n) ^ K[\gcd(a_1, a_2, \dots, a_n) = 1]\\ d ^{kn} \sum_{k = 1} ^{\frac{m}{d}} k ^{Kn} \mu(k) (\sum_{i = 1} ^{\frac{m}{kd}} i ^ k) ^ n\\ a1=1ma2=1man=1m(a1a2an)K[gcd(a1,a2,,an)=d]dKna1=1dma2=1dman=1dm(a1a2an)K[gcd(a1,a2,,an)=1]dknk=1dmkKnμ(k)(i=1kdmik)n

之后只要欧拉降幂搞一搞就行了,整体复杂度 O ( m log ⁡ m ) O(\sqrt m \log m) O(m logm),但是好像没必要,直接 O ( m log ⁡ m ) O(m \log m) O(mlogm)做就行了。

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int N = 1e5 + 10, mod = 59964251, phi = 59870352;

int mu[N], prime[N], cnt;

ll m, d, k, n, sum[N];

bool st[N];

char str[N];

ll quick_pow(ll a, int n, int mod = 59964251) {
    ll ans = 1;
    while(n) {
        if(n & 1) ans = ans * a % mod;
        a = a * a % mod;
        n >>= 1;
    }
    return ans;
}

void init() {
  memset(st, 0, sizeof st);
  cnt = 0;
  mu[1] = 1, sum[1] = 1;
  for(int i = 2; i < N; i++) {
    if(!st[i]) {
      mu[i] = -1;
      prime[cnt++] = i;
      sum[i] = quick_pow(i, k);
    }
    for(int j = 0; j < cnt && i * prime[j] < N; j++) {
      st[i * prime[j]] = 1;
      sum[i * prime[j]] = sum[i] * sum[prime[j]] % mod;
      if(i % prime[j] == 0) break;
      mu[i * prime[j]] = -mu[i];
    }
  }
  for(int i = 1; i < N; i++) {
    sum[i] = (sum[i] + sum[i - 1]) % mod;
  }
}

ll solve(ll m) {
  ll ans = 0;
  for (ll i = 1; i <= m; i++) {
    ans = ans + 1ll * mu[i] * quick_pow(i, k * n % phi + phi) % mod * quick_pow(sum[m / i], n + phi) % mod;
  }
  return (ans % mod + mod) % mod;
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  int T;
  scanf("%d", &T);
  while (T--) {
    scanf("%s %lld %lld %lld\n", str + 1, &m, &d, &k);
    init();
    int len = strlen(str + 1);
    n = 0;
    for (int i = 1; i <= len; i++) {
      n = n * 10 + str[i] - '0';
      n %= phi;
    }
    ll ans = quick_pow(d, k * n % phi + phi) * solve(m / d) % mod;
    printf("%lld\n", ans);
  }
  return 0;
}

E - XOR Tree(长链剖分)

给定一颗根节点为 1 1 1的有 n n n个节点的树点有点权 a i a_i ai d ( x , y ) d(x, y) d(x,y)表示 x , y x, y x,y之间的边数,集合 P ( x , k ) = { a y ∣ y   i s   t h e   s u b t r e e   o f   x   a n d   d ( x , y ) ≤ k } P(x, k) = \{a_y \mid y\ is\ the\ subtree\ of\ x\ and\ d(x, y) \leq k \} P(x,k)={ayy is the subtree of x and d(x,y)k} a x ∈ P ( x , k ) a_x \in P(x, k) axP(x,k)

定义一个集合的价值为,加入给定一个集合 { 1 , 1 , 2 , 3 } \{1, 1, 2, 3\} {1,1,2,3},则其价值为 ( 1 ⊕ 1 ) 2 + ( 1 ⊕ 2 ) 2 + ( 1 ⊕ 3 ) 2 + ( 1 ⊕ 2 ) 2 + ( 1 ⊕ 3 ) 2 + ( 2 ⊕ 3 ) 2 = 27 (1 \oplus 1) ^ 2 + (1 \oplus 2) ^ 2 + (1 \oplus 3) ^ 2 + (1 \oplus 2) ^ 2 + (1 \oplus 3) ^ 2 + (2 \oplus 3) ^ 2 = 27 (11)2+(12)2+(13)2+(12)2+(13)2+(23)2=27

给定 k k k,要我们求出 P ( i , k ) , i ∈ [ 1 , n ] P(i, k), i \in [1, n] P(i,k),i[1,n],答案对 2 64 2 ^ {64} 264取膜。

题目大概是要我们算这样一个东西:
∑ i = 1 n ∑ j = i + 1 n ( a i ⊕ a j ) 2 \sum_{i = 1} ^{n} \sum_{j = i + 1} ^{n} (a_i \oplus a_j) ^ 2\\ i=1nj=i+1n(aiaj)2
对二进制拆位后算贡献:
∑ i = 1 n ∑ j = i + 1 n ( ( a i , 0 ⊕ a j , 0 ) 2 0 + ( a i , 1 ⊕ a j , 1 ) 2 1 + ⋯ + ( a i , 29 ⊕ a j , 29 ) 2 29 ) 2 ∑ i = 1 n ∑ j = i + 1 n ∑ k 1 = 0 29 ∑ k 2 = 0 29 ( a i , k 1 ⊕ a j , k 1 ) ( a i , k 2 ⊕ a j , k 2 ) 2 k 1 + k 2 ∑ k 1 = 0 29 ∑ k 2 = 0 29 2 k 1 + k 2 ∑ i = 1 n ∑ j = k + 1 n [ a i , k 1 ≠ a j , k 1 ] [ a i , k 2 ≠ a j , k 2 ] \sum_{i = 1} ^{n} \sum_{j = i + 1} ^{n} \left((a_{i, 0} \oplus a_{j, 0}) 2 ^ 0 + (a_{i, 1} \oplus a_{j, 1}) 2 ^1 + \dots + (a_{i, 29} \oplus a_{j, 29}) 2 ^{29} \right) ^ 2\\ \sum_{i = 1} ^{n} \sum_{j = i + 1} ^{n} \sum_{k1 = 0} ^{29} \sum_{k2 = 0} ^{29} (a_{i, k_1} \oplus a_{j, k1})(a_{i, k2} \oplus a_{j, k2}) 2 ^{k1 + k2}\\ \sum_{k1 = 0} ^{29} \sum_{k2 = 0} ^{29} 2 ^{k1 + k2} \sum_{i = 1} ^{n} \sum_{j = k + 1} ^{n} [a_{i, k1} \neq a_{j, k1}][a_{i, k2} \neq a_{j, k2}]\\ i=1nj=i+1n((ai,0aj,0)20+(ai,1aj,1)21++(ai,29aj,29)229)2i=1nj=i+1nk1=029k2=029(ai,k1aj,k1)(ai,k2aj,k2)2k1+k2k1=029k2=0292k1+k2i=1nj=k+1n[ai,k1=aj,k1][ai,k2=aj,k2]


F - Function!(分类讨论)

f a ( x ) = a x ( a > 0 ,   a ≠ 1 ) f_a(x) = a ^ x(a > 0, \ a \neq 1) fa(x)=ax(a>0, a=1),我们要求 ∑ a = 2 n ( a ∑ b = a n ⌊ f a − 1 ( b ) ⌋ ⌈ f b − 1 ( a ) ⌉ ) \sum\limits_{a = 2} ^{n} \left(a \sum\limits_{b = a} ^{n} \lfloor f_a ^{-1}(b) \rfloor \lceil f_b ^{-1}(a) \rceil \right) a=2n(ab=anfa1(b)fb1(a))
∑ a = 2 n ( a ∑ b = a n ⌊ f a − 1 ( b ) ⌋ ⌈ f b − 1 ( a ) ⌉ ) ∑ a = 2 n ( a ∑ b = a n ⌊ log ⁡ a b ⌋ ⌈ log ⁡ b a ⌉ ) b ≥ a , 则 有 ⌈ log ⁡ b a ⌉ = 1 ∑ a = 2 n ( a ∑ b = a n ⌊ log ⁡ a b ⌋ ) \sum\limits_{a = 2} ^{n} \left(a \sum\limits_{b = a} ^{n} \lfloor f_a ^{-1}(b) \rfloor \lceil f_b ^{-1}(a) \rceil \right)\\ \sum_{a = 2} ^{n} \left( a \sum_{b = a} ^{n} \lfloor \log_a b \rfloor \lceil \log_b a \rceil \right)\\ b \geq a,则有 \lceil \log _b a \rceil = 1\\ \sum_{a = 2} ^{n} \left( a \sum_{b = a} ^{n} \lfloor \log_a b \rfloor\right)\\ a=2n(ab=anfa1(b)fb1(a))a=2n(ab=anlogablogba)balogba=1a=2n(ab=anlogab)

且容易发现,当 a × a > n a \times a > n a×a>n时,有 ⌊ log ⁡ a b ⌋ \lfloor \log _a b \rfloor logab恒为 1 1 1,所以可以单独用公式计算。

#include <bits/stdc++.h>

using namespace std;

const int mod = 998244353, inv2 = mod + 1 >> 1, inv6 = (mod + 1) / 6;

typedef long long ll;

ll calc1(ll l, ll r) {
  return (l + r) % mod * ((r - l + 1) % mod) % mod * inv2 % mod;
}

ll calc2(ll n) {
  n %= mod;
  return n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod;
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  ll a, n, ans = 0;
  cin >> n;
  for (a = 2; a * a <= n; a++) {
    for (ll l = a, r, k = 1; l <= n; l = r + 1, k++) {
      r = min(l * a - 1, n);
      int tot = (r - l + 1) % mod;
      ans = (ans + a * tot % mod * k % mod) % mod;
    }
  }
  // for (; a <= n; a++) {//原本我们是这样算的,当时这里可以变成,自然幂次求和的形式,所以可以快速算出来。
  //   ans = (ans + a * (n - a + 1) % mod) % mod;
  // }
  ans = (ans + (n + 1) % mod * calc1(a, n) % mod) % mod;
  ans = ((ans - calc2(n) + calc2(a - 1)) % mod + mod) % mod;
  cout << ans << "\n";
  return 0;
}

G - Pot!!(区间最大值)

#include <bits/stdc++.h>
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1

using namespace std;

const int N = 1e5 + 10;

struct Res {
  int a[N << 2], lazy[N << 2];

  void push_up(int rt) {
    a[rt] = max(a[ls], a[rs]);
  }

  void push_down(int rt) {
    if (lazy[rt]) {
      a[ls] += lazy[rt], a[rs] += lazy[rt];
      lazy[ls] += lazy[rt], lazy[rs] += lazy[rt];
      lazy[rt] = 0;
    }
  }

  void update(int rt, int l, int r, int L, int R, int v) {
    if (l >= L && r <= R) {
      lazy[rt] += v;
      a[rt] += v;
      return ;
    }
    push_down(rt);
    if (L <= mid) {
      update(lson, L, R, v);
    }
    if (R > mid) {
      update(rson, L, R, v);
    }
    push_up(rt);
  }

  int query(int rt, int l, int r, int L, int R) {
    if (l >= L && r <= R) {
      return a[rt];
    }
    push_down(rt);
    int ans = 0;
    if (L <= mid) {
      ans = max(ans, query(lson, L, R));
    }
    if (R > mid) {
      ans = max(ans, query(rson, L, R));
    }
    return ans;
  }
}a[20];

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  int n, m;
  scanf("%d %d", &n, &m);
  char op[10];
  for (int i = 1, l, r, x; i <= m; i++) {
    scanf("%s %d %d", op, &l, &r);
    if (op[1] == 'A') {
      printf("ANSWER %d\n", max({a[2].query(1, 1, n, l, r), a[3].query(1, 1, n, l, r), a[5].query(1, 1, n, l, r), a[7].query(1, 1, n, l, r)}));
    }
    else {
      scanf("%d", &x);
      int v = 0;
      while (x % 2 == 0) {
        x /= 2;
        v++;
      }
      if (v) {
        a[2].update(1, 1, n, l, r, v);
      }
      v = 0;
      while (x % 3 == 0) {
        x /= 3;
        v++;
      }
      if (v) {
        a[3].update(1, 1, n, l, r, v);
      }
      v = 0;
      while (x % 5 == 0) {
        x /= 5;
        v++;
      }
      if (v) {
        a[5].update(1, 1, n, l, r, v);
      }
      v = 0;
      while (x % 7 == 0) {
        x /= 7;
        v++;
      }
      if (v) {
        a[7].update(1, 1, n, l, r, v);
      }
    }
  }
  return 0;
}

I - Base62(进制转换)

import java.math.BigInteger;
import java.util.Stack;
import java.util.Scanner;
 
public class Main {
    private static final String TARGET_STR = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
    private static final char[] chs = TARGET_STR.toCharArray();
    private static final BigInteger INTEGER0 = new BigInteger("0");
    public static String numToRadix(String number, int radix) {
        if(radix < 0 || radix > TARGET_STR.length()){
            radix = TARGET_STR.length();
        }
        BigInteger bigNumber = new BigInteger(number);
        BigInteger bigRadix = new BigInteger(radix + "");
        Stack<Character> stack = new Stack<>();
        StringBuilder result = new StringBuilder(0);
        while (!bigNumber.equals(INTEGER0)) {
            stack.add(chs[bigNumber.remainder(bigRadix).intValue()]);
            bigNumber = bigNumber.divide(bigRadix);
        }
        for (; !stack.isEmpty(); ) {
            result.append(stack.pop());
        }
        return result.length() == 0 ? "0" : result.toString();
    }
    public static String radixToNum(String number, int radix){
        if(radix < 0 || radix > TARGET_STR.length()){
            radix = TARGET_STR.length();
        }
        if (radix == 10) {
            return number;
        }
        char ch[] = number.toCharArray();
        int len = ch.length;
        BigInteger bigRadix = new BigInteger(radix + "");
        BigInteger result = new BigInteger("0");
        BigInteger base = new BigInteger("1");
        for (int i = len - 1; i >= 0; i--) {
            BigInteger index = new BigInteger(TARGET_STR.indexOf(ch[i]) + "");
            result = result.add(index.multiply(base)) ;
            base = base.multiply(bigRadix);
        }
        return result.toString();
    }
    public static String transRadix(String num, int fromRadix, int toRadix) {
        return numToRadix(radixToNum(num, fromRadix), toRadix);
    }
    public static void main(String[] args) {
	Scanner cin = new Scanner(System.in);
	int x = cin.nextInt();
        int y = cin.nextInt();
        String s = cin.next();   
        System.out.println(Main.transRadix(s, x, y));
    }
}

K - Largest Common Submatrix(悬线 DP)

给定两个 n × m n \times m n×m的矩阵,找到一个矩阵,在这两个矩阵中都出现过,输出这个矩阵的最大值。

矩阵匹配问题,容易想到用悬线 DP,三个数组 l [ i ] [ j ] , r [ i ] [ j ] , u p [ i ] [ j ] l[i][j], r[i][j], up[i][j] l[i][j],r[i][j],up[i][j],分别记录,从 ( i , j ) (i, j) (i,j)点向左能到哪个位置,向右能到哪个位置,向上能拓展多少格。

#include <bits/stdc++.h>

using namespace std;

const int N = 1e3 + 10;

int a[N][N], b[N][N], l[N][N], r[N][N], up[N][N], X[N * N], Y[N * N], n, m;

int main() {
  scanf("%d %d", &n, &m);
  for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= m; j++) {
      scanf("%d", &a[i][j]);
      l[i][j] = r[i][j] = j, up[i][j] = 1;
    }
  }
  for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= m; j++) {
      scanf("%d", &b[i][j]);
      X[b[i][j]] = i, Y[b[i][j]] = j;
    }
  }
  for (int i = 1; i <= n; i++) {
    for (int j = 2; j <= m; j++) {
      if (a[i][j - 1] == b[X[a[i][j]]][Y[a[i][j]] - 1]) {
        l[i][j] = l[i][j - 1];
      }
    }
    for (int j = m - 1; j >= 1; j--) {
      if (a[i][j + 1] == b[X[a[i][j]]][Y[a[i][j]] + 1]) {
        r[i][j] = r[i][j + 1];
      }
    }
  }
  int ans = 0;
  for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= m; j++) {
      if (i > 1 && a[i - 1][j] == b[X[a[i][j]] - 1][Y[a[i][j]]]) {
        up[i][j] = up[i - 1][j] + 1;
        l[i][j] = max(l[i][j], l[i - 1][j]);
        r[i][j] = min(r[i][j], r[i - 1][j]);
      }
      ans = max(ans, (r[i][j] - l[i][j] + 1) * up[i][j]);
    }
  }
  printf("%d\n", ans);
  return 0;
}

N - Fibonacci Sequence(签到)

#include <bits/stdc++.h>

using namespace std;

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  puts("1 1 2 3 5");
  return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值