G. GCD Festival
∑
i
=
1
n
∑
j
=
1
n
gcd
(
a
i
,
a
j
)
gcd
(
i
,
j
)
∑
d
=
1
n
d
∑
i
=
1
n
d
∑
j
=
1
n
d
gcd
(
a
i
d
,
a
j
d
)
[
gcd
(
i
,
j
)
=
1
]
∑
d
=
1
n
d
∑
k
=
1
n
d
μ
(
k
)
∑
i
=
1
n
k
d
∑
j
=
1
n
k
d
gcd
(
a
i
k
d
,
a
j
k
d
)
T
=
k
d
∑
T
=
1
n
∑
i
=
1
n
T
∑
j
=
1
n
T
gcd
(
a
i
T
,
a
j
T
)
∑
d
∣
T
d
μ
(
T
d
)
∑
T
=
1
n
ϕ
(
T
)
∑
i
=
1
n
T
∑
j
=
1
n
T
gcd
(
a
i
T
,
a
j
T
)
\sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \gcd(a_i, a_j) \gcd(i, j)\\ \sum_{d = 1} ^{n} d \sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{\frac{n}{d}} \gcd(a_{id}, a_{jd})[\gcd(i, j) = 1]\\ \sum_{d = 1} ^{n} d \sum_{k = 1} ^{\frac{n}{d}} \mu(k) \sum_{i = 1} ^{\frac{n}{kd}} \sum_{j = 1} ^{\frac{n}{kd}} \gcd(a_{i kd}, a_{jkd})\\ T = kd\\ \sum_{T = 1} ^{n} \sum_{i = 1} ^{\frac{n}{T}} \sum_{j = 1} ^{\frac{n}{T}} \gcd(a_{iT}, a_{jT}) \sum_{d \mid T} d \mu(\frac{T}{d})\\ \sum_{T = 1} ^{n} \phi(T) \sum_{i = 1} ^{\frac{n}{T}} \sum_{j = 1} ^{\frac{n}{T}} \gcd(a_{iT}, a_{jT})\\
i=1∑nj=1∑ngcd(ai,aj)gcd(i,j)d=1∑ndi=1∑dnj=1∑dngcd(aid,ajd)[gcd(i,j)=1]d=1∑ndk=1∑dnμ(k)i=1∑kdnj=1∑kdngcd(aikd,ajkd)T=kdT=1∑ni=1∑Tnj=1∑Tngcd(aiT,ajT)d∣T∑dμ(dT)T=1∑nϕ(T)i=1∑Tnj=1∑Tngcd(aiT,ajT)
我们考虑设
f
(
n
,
T
)
=
∑
i
=
1
n
T
∑
j
=
1
n
T
gcd
(
a
i
T
,
a
j
T
)
f(n, T) = \sum\limits_{i = 1} ^{\frac{n}{T}} \sum\limits_{j = 1} ^{\frac{n}{T}} \gcd(a_{iT}, a_{jT})
f(n,T)=i=1∑Tnj=1∑Tngcd(aiT,ajT),
g
(
x
)
g(x)
g(x)为
i
∈
[
T
,
2
T
,
…
,
n
T
T
]
i \in [T, 2T, \dots, \frac{n}{T} T]
i∈[T,2T,…,TnT]时
x
x
x的出现次数。
f
(
n
,
T
)
=
∑
i
=
1
m
∑
j
=
1
m
g
(
i
)
g
(
j
)
gcd
(
i
,
j
)
,
(
m
=
1
0
5
)
∑
d
=
1
m
d
∑
i
=
1
m
d
∑
j
=
1
m
d
g
(
i
d
)
g
(
j
d
)
[
gcd
(
i
,
j
)
=
1
]
∑
d
=
1
m
d
∑
k
=
1
n
d
μ
(
k
)
(
∑
i
=
1
m
k
d
g
(
i
k
d
)
)
2
T
=
k
d
∑
T
=
1
m
ϕ
(
T
)
(
∑
i
=
1
m
T
g
(
i
T
)
)
2
f(n, T) = \sum_{i = 1} ^{m} \sum_{j = 1} ^{m} g(i) g(j) \gcd(i, j), (m = 10 ^ 5)\\ \sum_{d = 1} ^{m} d \sum_{i = 1} ^{\frac{m}{d}} \sum_{j = 1} ^{\frac{m}{d}} g(id) g(jd) [\gcd(i, j) = 1]\\ \sum_{d = 1} ^{m} d \sum_{k = 1} ^{\frac{n}{d}} \mu(k) \left( \sum_{i = 1} ^{\frac{m}{kd}} g(ikd) \right) ^ 2\\ T = kd\\ \sum_{T = 1} ^{m} \phi(T) \left( \sum_{i = 1} ^{\frac{m}{T}} g(iT) \right) ^ 2\\
f(n,T)=i=1∑mj=1∑mg(i)g(j)gcd(i,j),(m=105)d=1∑mdi=1∑dmj=1∑dmg(id)g(jd)[gcd(i,j)=1]d=1∑mdk=1∑dnμ(k)⎝⎛i=1∑kdmg(ikd)⎠⎞2T=kdT=1∑mϕ(T)⎝⎛i=1∑Tmg(iT)⎠⎞2
考虑重新定义
g
(
n
)
g(n)
g(n)表示为是
n
n
n的倍数的数字有多少个,则上式可以直接写成:
∑
T
=
1
m
ϕ
(
T
)
g
(
T
)
2
\sum_{T = 1} ^{m} \phi(T) g(T) ^ 2\\
T=1∑mϕ(T)g(T)2
由此我们可以在
O
(
n
log
2
n
)
O(n \log ^ 2n)
O(nlog2n)的时间内完成这题。
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10, mod = 1e9 + 7;
int prime[N], phi[N], a[N], n, cnt;
int sum[N], m;
bool st[N];
vector<int> fac[N];
inline int add(int x, int y) {
return x + y < mod ? x + y : x + y - mod;
}
inline int sub(int x, int y) {
return x >= y ? x - y : x - y + mod;
}
void init() {
phi[1] = 1;
for (int i = 2; i < N; i++) {
if (!st[i]) {
prime[++cnt] = i;
phi[i] = i - 1;
}
for (int j = 1; j <= cnt && 1ll * i * prime[j] < N; j++) {
st[i * prime[j]] = 1;
if (i % prime[j] == 0) {
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
}
for (int i = 1; i < N; i++) {
for (int j = i; j < N; j += i) {
fac[j].push_back(i);
}
}
}
int f(int n, int T) {
int ans = 0;
for (int i = T; i <= n; i += T) {
for (auto it : fac[a[i]]) {
ans = sub(ans, 1ll * phi[it] * sum[it] % mod * sum[it] % mod);
sum[it]++;
ans = add(ans, 1ll * phi[it] * sum[it] % mod * sum[it] % mod);
}
}
for (int i = T; i <= n; i += T) {
for (auto it : fac[a[i]]) {
sum[it]--;
}
}
return ans;
}
int main() {
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
init();
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
int ans = 0;
for (int T = 1; T <= n; T++) {
ans = add(ans, 1ll * phi[T] * f(n, T) % mod);
}
printf("%d\n", ans);
return 0;
}