【Java 优先队列(小顶堆)& 分治法 实现合并k个排序链表】

题目:力扣-合并k个排序链表https://leetcode.cn/problems/vvXgSW/

给定一个链表数组,每个链表都已经按升序排列。

请将所有链表合并到一个升序链表中,返回合并后的链表。

示例 1:
输入:lists = [[1,4,5],[1,3,4],[2,6]]
输出:[1,1,2,3,4,4,5,6]
解释:链表数组如下:
[
1->4->5,
1->3->4,
2->6
]
将它们合并到一个有序链表中得到。
1->1->2->3->4->4->5->6

示例 2:
输入:lists = []
输出:[]

示例 3:
输入:lists = [[]]
输出:[]

提示:
k == lists.length
0 <= k <= 10^4
0 <= lists[i].length <= 500
-10^4 <= lists[i][j] <= 10^4
lists[i] 按 升序 排列
lists[i].length 的总和不超过 10^4

优先队列(小顶堆)法

合并后的第一个节点 first,一定是某个链表的头节点(因为链表已按升序排列)。

合并后的第二个节点,可能是某个链表的头节点,也可能是 first 的下一个节点。

例如有三个链表 1->2->5, 3->4->6, 4->5->6,找到第一个节点 1 之后,第二个节点不是另一个链表的头节点,而是节点 1 的下一个节点 2。

按照这个过程继续思考,每当我们找到一个节点值最小的节点 x,就把节点 x.next 加入「可能是最小节点」的集合中。

因此,我们需要一个数据结构,它支持:

  • 从数据结构中找到并移除最小节点。
  • 插入节点。

这可以用小顶堆实现。初始把所有链表的头节点入堆,然后不断弹出堆中最小节点 x,如果 x.next 不为空就加入堆中。循环直到堆为空。把弹出的节点按顺序拼接起来,就得到了答案。

代码实现

实现时,为方便处理临界条件可以用虚拟节点简化代码

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode mergeKLists(ListNode[] lists) {
        PriorityQueue<ListNode> pq = new PriorityQueue<>((o1, o2) -> o1.val - o2.val);
        for (ListNode head : lists)
            if (head != null) {
                pq.offer(head);
			}
        ListNode dummy = new ListNode(); // 虚拟节点,作为合并后链表头节点的前一个节点
        ListNode cur = dummy;
        while (!pq.isEmpty()) { // 循环直到堆为空
            ListNode node = pq.poll(); // 剩余节点中的最小节点
            if (node.next != null) { // 下一个节点不为空
                pq.offer(node.next); // 下一个节点有可能是最小节点,入堆
            }
            cur.next = node; // 合并到新链表中
            cur = cur.next; // 准备合并下一个节点
        }
        return dummy.next; // 虚拟节点的下一个节点就是新链表的头节点
    }
}

复杂度分析
时间复杂度:O(nlogk),其中 k 为 lists 的长度,n 为所有链表的节点数之和。
空间复杂度:O(k)。堆中至多有 k 个元素。

分治法

暴力做法是,按照【合并两个有序链表】的题解思路,先合并前两个链表,再把得到的新链表和第三个链表合并,再和第四个链表合并,依此类推。
但是这种做法,平均每个节点会参与到 O(k) 次合并中(用 (1+2+⋯+k)/k 粗略估计),所以总的时间复杂度为 O(nk)。
一个巧妙的思路是,把 lists 一分为二(尽量均分),先合并前一半的链表,再合并后一半的链表,然后把这两个链表合并成最终的链表。如何合并前一半的链表呢?我们可以继续一分为二。如此分下去直到只有一个链表,此时无需合并。–>利用分治思想的递归实现

复杂度分析: 按照一分为二再合并的逻辑,递归像是在后序遍历一棵平衡二叉树。由于平衡树的高度是 O(logk),所以每个链表节点只会出现在 O(logk) 次合并中!这样就做到了更快的 O(nlogk) 时间。

代码实现

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode mergeKLists(ListNode[] lists) {
        return mergeKLists(lists, 0, lists.length);
    }
    // 合并从 lists[i] 到 lists[j-1] 的链表
    private ListNode mergeKLists(ListNode[] lists, int i, int j) {
        int m = j - i;
        if (m == 0) return null; // 注意输入的 lists 可能是空的
        if (m == 1) return lists[i]; // 无需合并,直接返回
        //分治思想
        ListNode left = mergeKLists(lists, i, i + m / 2); // 合并左半部分
        ListNode right = mergeKLists(lists, i + m / 2, j); // 合并右半部分
        return mergeTwoLists(left, right); // 最后把左半和右半合并
    }

    // 合并两个有序链表
    private ListNode mergeTwoLists(ListNode list1, ListNode list2) {
        ListNode dummy = new ListNode(); // 用虚拟节点简化代码逻辑
        ListNode cur = dummy; // cur 指向新链表的末尾
        while (list1 != null && list2 != null) {
            if (list1.val < list2.val) {
                cur.next = list1; // 把 list1 加到新链表中
                list1 = list1.next;
            } else { // 注:相等的情况加哪个节点都是可以的
                cur.next = list2; // 把 list2 加到新链表中
                list2 = list2.next;
            }
            cur = cur.next;
        }
        cur.next = list1 != null ? list1 : list2; // 拼接剩余链表
        return dummy.next;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

唯时

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值