NILMTK程序运行

NILM非侵入式负荷监测

第三章 NILMTK程序运行



NILMTK安装完成之后,可以运行程序测试一下,官方给出了教程https://github.com/nilmtk/buildsys2019-paper-notebooks,但该教程是.ipynb格式,需要利用jupyter notebook打开,本文提供.py格式文件,可以直接运行。作为对比算法,非常方便!

from nilmtk.api import API
from nilmtk.disaggregate import CO,Mean,FHMMExact

REDD1 = {
  'power': {'mains': ['apparent'],'appliance': ['active']},
  'sample_rate':60,
    'appliances': ['fridge','light','washer dryer','dish washer','microwave'],
  'artificial_aggregate': True,
  'methods': {
        'CO': CO({}),
        'Mean': Mean({}),
        'FHMMExact': FHMMExact({'num_of_states':3}),
      },
  'train': {    
    'datasets': {
        'REDD': {
            'path': 'D:/data/redd.h5',  
            'buildings': {
                1: {
                    'start_time': '2011-04-19',
                    'end_time': '2011-04-25'
                    }   
                }                
            }
        }
    },
                
  'test': {
    'datasets': {
        'REDD': {
            'path': 'D:/data/redd.h5',  
            'buildings': {
                1: {
                    'start_time': '2011-05-01',
                    'end_time': '2011-05-02'
                    }    
                }
            }
        },
        'metrics':['rmse','f1score']
    }
}

api_results_experiment_1 = API(REDD1)

errors_keys = api_results_experiment_1.errors_keys
errors = api_results_experiment_1.errors

list_mean_result=[err.mean() for err in errors]
ps_rmse=list_mean_result[0]
ps_f1=list_mean_result[1]

结果如图所示:
在这里插入图片描述

公众号

在这里插入图片描述
欢迎收藏、点赞、和转发,你的阅读是我的前进动力!

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值