NILM非侵入式负荷监测
第一章 非侵入式负荷监测的定义
1 非侵入式负荷监测的定义
负荷监测技术(Load Monitoring)是智能电网高级量测基础体系的重要组成部分之一,通过深度挖掘电力用户的用电负荷数据,借助数据分析、处理技术,向用户和电网公司双方反馈详细的负荷用电信息。对用户而言,负荷监测技术可以帮助用户获得负荷用电信息,掌握用电设备的运行情况和耗能信息,有利于用户自主调节用电行为,减少不必要的电能消耗,提高节电意识。对电网公司而言,负荷监测技术可以辅助电网公司了解用户的用电习惯,提高电网运行的稳定性、高效性、经济性,还有助于提升需求侧管理的效率,以较低的成本构建更加完善的电能管理系统。
根据监测装置安装方式的不同,负荷监测可分为侵入式负荷监测(Intrusive Load Monitoring,ILM)和非侵入式负荷监测(Non-intrusive Load Monitoring,NILM),具体方案如图1、图2所示。侵入式负荷监测技术需要安装大量的监测装置,包括在用户电气进户端安装智能电表以及在家庭内部每个用电设备上安装传感器。此方法可以获得精确的用电信息,但需要耗费大量的设备安装及维护成本。非侵入式负荷监测技术只需在用户总线入口处安装一个监测设备,通过智能算法将所采集的总负荷电气量分解为各用电器的电气数据,并识别各个用电器工作状态和电能消耗信息,极大地降低了设备安装的成本。相对于传统的负荷监测技术,非侵入式负荷分解技术所需成本低,实施难度小,操作便利,更容易普及。
图1:侵入式负荷监测
图2:非侵入式负荷监测
2 非侵入式负荷监测的分类
NILM由美国麻省理工学院Hart教授于1992年首次提出,随着机器学习方法的发展,该方向逐渐成为研究热点。目前关于NILM的研究,主要分为负荷识别和负荷分解。
负荷识别:也被称为负荷辨识,笔者认为其目标是根据用电总信息识别出各个电器,属于分类任务。通过检测用电器投切事件并对事件进行分类来实现负荷监测,识别电器。具体实现步骤包含数据收集、数据处理、事件检测、特征提取和负荷识别5个步骤。其中后面三个步骤是负荷识别的核心,一直以来都是研究热点。
负荷分解:笔者认为其目标是根据用电总信息分解出各个电器的能耗信息。根据用电总信息(如:功率特征),直接预测出各个电器的能耗信息(如:功率序列)。通常采用的方法:基于深度学习的方法、隐马尔可夫模型及其变体、组合优化方法。关于负荷分解任务,有一个开源的工具包NILMTK。
公众号
欢迎收藏、点赞、和转发,你的阅读是我的前进动力。
参考资料
[1] 吴昭.面向智能用电的非侵入式负荷分解关键技术研究[D].重庆大学,2022.
[2] Hart G W. Nonintrusive Appliance Load Monitoring[J]. Proceedings of the IEEE, 1992, 80(12): 1870 - 1891.
[3] https://github.com/nilmtk/nilmtk