三种方法实现数据离散化-python实现

本文介绍了如何使用Python进行数据离散化,包括等宽法、等频法以及K-means聚类。通过实例展示了等宽离散化、等频率离散化生成的分段,并展示了如何利用聚类算法对数据进行分组。三种方法的应用有助于数据预处理和可视化分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述

#-*- coding: utf-8 -*-
#数据规范化
import pandas as pd

datafile = '../data/discretization_data.xls' #参数初始化
data = pd.read_excel(datafile) #读取数据
data = data[u'肝气郁结证型系数'].copy()
k = 4

d1 = pd.cut(data, k, labels = range(k)) 
#等宽离散化,各个类比可以命名为0,1,2,3

#等频率离散化
w = [1.0*i/k for i in range(k+1)]
w = data.describe(percentiles = w)[4:4+k+1] #使用describe函数自动计算分位数
w[0] = w[0]*(1-1e-10)#构造闭区间
d2 = pd.cut(data, w, labels = range(k))

from sklearn.cluster import KMeans #引入KMeans
kmodel = KMeans(n_clusters = k, n_jobs = 4) #建立模型,n_jobs是并行数,一般等于CPU数较好
kmodel.fit(data.reshape((len(data), 1))) #训练模型
c = pd.DataFrame(kmodel.cluster_centers_).sort(0) #输出聚类中心,并且排序(默认是随机序的)

#rolling_mean表示移动平均,即用当前值和前2个数值取平均数,相当于相邻两项求中点
#由于通过移动平均,会使得第一个数变为空值,因此需要使用.iloc[1:]过滤掉空值
w = pd.rolling_mean(c, 2).iloc[1:] #相邻两项求中点,作为边界点,但缺少首末边界点
w = [0] + list(w[0]) + [data.max()] #把首末边界点加上
d3 = pd.cut(data, w, labels = range(k))

def cluster_plot(d, k): #自定义作图函数来显示聚类结果
  import matplotlib.pyplot as plt
  plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
  plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
  
  plt.figure(figsize = (8, 3))
  for j in range(0, k):
    plt.plot(data[d==j], [j for i in d[d==j]], 'o')
  
  plt.ylim(-0.5, k-0.5)
  return plt

cluster_plot(d1, k).show()

cluster_plot(d2, k).show()
cluster_plot(d3, k).show()

参考了数据离散化 - 等宽&等频&聚类离散 - Python代码

### 使用 Python 实现 KMeans 聚类并进行数据离散化 KMeans 是一种常用的无监督学习算法,能够将数据划分为若干个簇。通过结合 `scikit-learn` 库中的工具,可以轻松实现这一过程,并进一步对连续型数据进行离散化。 #### 数据预处理 在应用 KMeans 前,通常需要标准化或归一化数据以消除特征尺度差异的影响[^3]。这一步骤对于提高模型性能至关重要。 ```python from sklearn.preprocessing import StandardScaler # 初始化标准化器 scaler = StandardScaler() # 对数据进行标准化 df_scaled = scaler.fit_transform(df) ``` #### KMeans 聚类实现 以下是基于 `scikit-learn` 的 KMeans 算法实现: ```python from sklearn.cluster import KMeans # 定义聚类数量 n_clusters 和初始化 KMeans 模型 kmeans = KMeans(n_clusters=5, random_state=42) # 训练模型 kmeans.fit(df_scaled) # 获取每个样本所属的类别标签 labels = kmeans.labels_ # 输出各簇中心点坐标 print("Cluster Centers:") print(kmeans.cluster_centers_) ``` 上述代码中,`n_clusters` 参数指定了期望划分的簇数,可以根据具体需求调整。此外,还可以利用惯性(Inertia)指标评估聚类效果[^4]。 ```python # 输出惯性值(误差平方和) print(f"Inertia: {kmeans.inertia_}") ``` #### 数据离散化 为了将连续型数据转换为离散形式,可以依据聚类结果重新编码原始数据。例如,使用 Pandas 将每条记录映射到对应的簇编号上。 ```python import pandas as pd # 创建 DataFrame 存储原数据及其对应簇号 discretized_data = df.copy() discretized_data['cluster'] = labels # 查看前几行数据 print(discretized_data.head()) ``` 如果希望更精细地控制离散区间,则需额外引入业务逻辑判断标准[^5]。 --- ### 注意事项 1. **初始质心的选择**:随机种子 (`random_state`) 可确保每次运行得到一致的结果。 2. **维度灾难问题**:当面对高维稀疏矩阵时,建议先执行降维操作再实施 KMeans[^1]。 3. **最优簇数确定**:采用肘部法则 (Elbow Method) 或 Gap Statistic 方法辅助决策最佳分组数目[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值