【MATLAB项目实战】基于Morlet小波变换的滚动轴承故障特征提取研究 轴承在运行过程中发生点蚀、剥落、擦伤等表面损伤类故障时,在损伤部位产生的突变冲击脉冲力作用下,会形成周期性冲击振动。而小波变换具有良好的时频分辨率和瞬态检测能力,非常适合处理此类非平稳信号。根据小波变换原理,小波变换系数对应信号局部与各小波基函数的相似程度,即系数值越大,相似程度越高,鉴于Morlet小波形状与上述轴承故障信号的冲击特征相似,利用连续小波变换对信号进行细致的时间尺度网格刻划,可以在轴承表面损伤早期提取振动信号中的冲击特征。...
【MATLAB项目实战】LDPC-BP信道编码 Gallger于 1960年提出的低密度校验(Low Density ParityCheck,LDPC)码也能逼近香农界。本节介绍二进制LDPC码的仿真实现
【MATLAB项目实战】基于SPI指数的某地区地区干旱时空特征分析 **本文采用SPI指数对某地区地区干旱情况进行时空分析**SPI指数是McKee等在评估美国科罗拉多州干旱状况时提出的。对于某一地区而言,确定时间段内的降水量一般呈规律性的波动变化。基于这个事实,认为某一地区确定时间段内的降水量若比该时间段内多年平均降水量(可以认为是正常降水量)偏少到一定程度,就认为该地区该时段发生了干旱;反之﹐若偏多到一定程度﹐则发生洪涝。假定降水量的变化服从gamma分布,运用数学方法将降水量的累计频率分布转化为标准正态分布﹐最后求得SPI。SPI指数具有无量纲﹑标准化的特点﹐能够
【Python项目实战】基于时间卷积网络(Temporal Convolution Network ,TCN)的发动机剩余寿命预测 航空发动机结构复杂,状态变量多且相互之间存在着严重非线性特征,传统的基于物理失效模型的方法难以精确地预测发动机的剩余寿命(RUL)。针对此问题,采用时间卷积网络(Temporal Convolution Network ,TCN)作为一种最新出现的序列神经网络,被证明在序列数据预测上有良好的效果。采用TCN实现对发动机剩余寿命进行预测,预测过程通过建立退化模型,给每个训练样本添加RUL标签;将特征输入构建的卷积神经网络得到剩余寿命的预测值。为了验证方法的有效性,在NASA提供的涡轮风扇发动机仿真数据集(C-