2021-07-30

本文深入探讨了支持向量机(SVM)的理论,重点讲解了如何通过线性方程描述样本空间中的划分超平面。进一步阐述了SVM的对偶问题,通过对w和b求导,消去原始变量,得到了拉格朗日对偶表达式,为理解和应用SVM提供了关键的数学基础。
摘要由CSDN通过智能技术生成

第6章 支持向量机

在样本空间中,划分超平面可通过如下线性方程来描述:
在这里插入图片描述

在这里插入图片描述
对偶问题:

在这里插入图片描述
对w和b求导:
在这里插入图片描述
将上式带入到拉格朗日函数中,消去w和b,得到对偶表达式:

在这里插入图片描述在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值