吃瓜Task
lll_Watermelon
这个作者很懒,什么都没留下…
展开
-
2021-07-30
第6章 支持向量机 在样本空间中,划分超平面可通过如下线性方程来描述: 对偶问题: 对w和b求导: 将上式带入到拉格朗日函数中,消去w和b,得到对偶表达式:原创 2021-07-30 00:11:57 · 58 阅读 · 0 评论 -
2021-07-26
第5章 神经网络 神经元 神经网络中最基本的单元是一直沿用至今的“M-P神经元”,神经元接收到来自 n 个其他神经元传递过来的输入信号,这些输入信号通过带权重的连接进行传递,神经元接收到的总输入值将与神经元的阈值进行比较,然后通过“激活函数”输出。 感知机 感知机是两层神经元组成,即输入层和输出层。它是最简单的神经网络,学习得是一个超平面,但其表达能力非常有限,例如“异或”问题它就表达学习不了。要解决这类问题,所以需要考虑多层功能的神经元。即利用感知机神经元构成多层神经网络。 常用激活函数 阶跃函数/sig原创 2021-07-26 00:57:44 · 255 阅读 · 0 评论 -
2021-07-22
第4章 决策树 一棵决策树包含一个根节点、若干个内部结点和若干个叶结点;叶结点对应于决策结果,其他每个结点则对应于一个属性测试;每个结点包含的样本集合根据属性测试的结果被划分到子结点中;根节点包含样本全集。从根结点到每个叶结点的路径对应了一个判定结果序列。 决策树的基本流程: 划分选择 信息熵是度量样本程度最常用的一种指标。 ...原创 2021-07-22 23:55:53 · 55 阅读 · 1 评论 -
2021-07-19
第3章 线性模型 3.1 线性回归 3.1.1 单变量线性回归 3.1.2 多元线性回归 3.2 对数几率回归 含义:即用线性回归模型的预测结果去逼近真实标记的对数几率。 “逻辑回归(Logistic Regression)是一种广义线性回归。线性回归解决的是回归问题,预测值是实数范围,逻辑回归则相反,解决的是分类问题,预测值是[0,1]范围。所以逻辑回归名为回归,实为分类。” 3.3 线性判别 ...原创 2021-07-19 23:58:55 · 144 阅读 · 2 评论 -
2021-07-10
吃瓜Task01 第1章 绪论 机器学习研究的主要内容就是关于从数据中产生模型的算法,即从一堆现有的西瓜的数据中产生“模型”,再来一个新瓜,“模型”就会帮助判断是否是好瓜。 第2章 模型评估与选择 ...原创 2021-07-13 22:42:29 · 54 阅读 · 0 评论