LeetCode__最长回文子串
最长回文子串
概念
回文串 :如果一个字符串正着读和反着读是一样的,那它就是回文串。
方法一: 暴力解法
class Solution {
public:
string longestPalindrome(string s) {
string res="";//存放结果
string temp="";//存放子串
for(int i=0;i<s.length();i++)
{
for(int j=i;j<s.length();j++)
{
temp=temp+s[j];
string tem=temp;//tem存放子串反转结果
std::reverse(tem.begin(),tem.end());//反转
if(temp==tem)
res=res.length()>temp.length()?res:temp;
}
temp="";
}
return res;
}
方法二:中心扩散
我们观察到回文中心的两侧互为镜像。因此,回文可以从它的中心展开,并且只有 2n - 1 个这样的中心。
你可能会问,为什么会是 2n - 1 个,而不是 n 个中心?
因为回文的中心要区分单双。
假如回文的中心为 双数,例如 abba,那么可以划分为 ab bb ba,对于n长度的字符串,这样的划分有 n-1 种。
假为回文的中心为 单数,例如 abcd, 那么可以划分为 a b c d, 对于n长度的字符串,这样的划分有 n 种。
对于 n 长度的字符串,我们其实不知道它的回文串中心倒底是单数还是双数,所以我们要对这两种情况都做遍历,也就是 n+(n-1) = 2n - 1,所以时间复杂度为 O(n)。
当中心确定后,我们要围绕这个中心来扩展回文,那么最长的回文可能是整个字符串,所以时间复杂度为 O(n)。
所以总时间复杂度为 O(n^2)
#include <iostream>
using namespace std;
class Solution {
public:
string longestPalindrome(string s)
{
if (s.length() < 1)
{
return "";
}
int start = 0, end = 0;
for (int i = 0; i < s.length(); i++)
{
int len1 = expandAroundCenter(s, i, i);//一个元素为中心
int len2 = expandAroundCenter(s, i, i + 1);//两个元素为中心
int len = max(len1, len2);
if (len > end - start)
{
start = i - (len - 1) / 2;
end = i + len / 2;
}
}
return s.substr(start, end - start + 1);
}
/// 计算以left和right为中心的回文串长度
int expandAroundCenter(string s, int left, int right)
{
while (left >= 0 && right < s.length() && s[left] == s[right])
{
left--;
right++;
}
return right - left - 1;
}
};
int main()
{
std::cout << "Hello World!\n";
string ts = "aacbbcd";
Solution sl;
string res = sl.longestPalindrome(ts);
return 0;
}