从几周到分钟:机器学习模型预测风暴潮模型更快【Paper】

FROM WEEKS TO MINUTES: MACHINE-LEARNING MODEL PREDICTS STORM SURGE QUICKLY

从几周到分钟: 机器学习模型预测风暴潮模型更快


在这里插入图片描述

Abstract

快速准确地预测沿海广泛区域的峰值风暴潮对于评估设计用于保护沿海社区生命和财产的系统是必要的。近年来,在高保真度物理模型方面取得了显著进展,但在概率预测和概率灾害评估中使用这些模型是计算密集的。最近提出了几种基于现有高保真度合成风暴潮模拟数据库的代理建模方法,可在不大幅度降低准确性的情况下减少计算负担。然而,在这些以前的研究中,代理建模方法依赖于某一时刻的热带气旋条件(通常在或接近登陆时),这不总是与峰值风暴潮最相关的。本研究提出了一种新的一维卷积神经网络模型,结合主成分分析和K均值聚类(C1PKNet),可以从热带气旋条件的时间序列(即风暴路径)快速预测沿海广泛区域的峰值风暴潮。C1PKNet模型是使用现有的1031个高保真度风暴潮模拟数据库(包括登陆和绕过的风暴) 对美国切萨皮克湾地区进行训练和交叉验证的。此外,根据三次历史飓风(2003年Isabel飓风、2011年Irene飓风和2012年Sandy飓风)的观测结果评估了C1PKNet模型的性能。结果表明,C1PKNet模型具有计算效率,并可以从现实热带气旋路径时间序列中预测峰值风暴潮。我们相信,这种新的代理模型可以通过提供快速的风暴潮预测来增强沿海的韧性。

PASS:该图片用的是另一篇文章,可见下参考

研究人员可以精准指出飓风的,风暴增水在任何给定的岸线上,但是有一个问题:这可能需要超级计算机花费几周时间产生较多的细节关于这个单一个风暴场景。预报人员需要模拟数百或数千种情况,才能准确得到风暴增水最可能发生的地点。

一个新的模型可精确预报风暴增水的峰值——飓风产生的高水位——在the Chesapeake Bay地区在几分钟之内。
Lee训练这个模型学会在风暴数据学习和分析,最终获得准确的预测。

尽管存在一些机器学习模型预报风暴增水,这些模型预报风暴期间的高水位时,仅考虑风暴的特征。这意味着现在的模型不能区别2个风暴在登陆时看上去一致,但是他们登陆的路径却截然不同。历史的记录也表明在登陆时风暴的特征不是最好的因子对于预报他们引起的增水。

这个是现有模型的缺点。预报风暴增水的峰值不仅仅在气旋登陆的位置,还可以使用气旋的路径。

Reference

本文参考链接:
https://vaseagrant.org/storm-surge-model/

论文参考链接:

Rapid prediction of peak storm surge from tropical cyclone track time series using machine learning

图片海报来源:How will sea-level rise affect storm surge hazards in coastal Virginia?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

早起CaiCai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值