二叉树

树的概念

树(Tree)是n(n>=0)个结点的有限集合,在任何一颗非空树中:

(1)有且仅有一个特定称为根(root)的结点;

(2)当n>1时,其余节点可以分为m个互不相交的有限集T1,T2...Tm;

其中每个集合本身又是一个树,并且称为根的子树(subtree)。

树是一种递归的数据结构,树作为一种逻辑结构,同时也是一种分层结构,树的根结点没有前驱节点,而其他结点都有唯一一个前驱结点,而树的任意一个结点都有0或多个后继结点。

树的结点

树的结点包含一个数据元素以及若干指向其子树的分支。

结点的度(Degree):结点所拥有子树的数量,称为结点的度,度为0的结点称为叶子结点(leaf)或终端结点。

结点的层次(Level):从根开始定义起,根为第一层,根的孩子为第二层。

结点的深度(Deep):从根结点开始自顶向下逐层累加。

结点的高度(High):从叶子结点开始自底向上逐层累加。

考虑结点 K ,根 A 到结点 K 的唯一路径上的任意结点,称为结点 K 的祖先结点。

               如结点 B 是结点 K  的祖先结点,而结点 K 是结点 B 的子孙结点。

               路径上最接近结点 K 的结点 E 称为结点 K 的双亲结点,而结点 K 为结点 E 的孩子结点。

               根 A 是树中唯一没有双亲的结点。

               有相同双亲的结点称为兄弟结点,如结点 K 和结点 L 有相同的双亲结点,即 K 和 L 为兄弟结点。

树中一个结点的子结点个数称为该结点的度。

              树中结点的最大度数称为树的度。

              例如:结点 B 的度为 2 ; 结点 D 的度为 3 , 树的度为 3 。

度大于 0 的结点称为 分支结点(又称为非终端结点)

             度为 0 的(没有子女结点)的结点称为叶子结点(又称为终端结点)。

             在分支结点中,每个结点的分支树就是该结点的度。

结点的深度、高度和层次

            结点的层次从树根开始定义,根结点为第 1 层(有些教材中将根结点定义为第 0 层),它的子结点为第2 层,依次类推。

           结点的深度是从根结点开始自顶向下逐层累加的。

           结点的高度是从叶结点开始自底向上逐层累加的。

           树的高度(又称为深度)是树中结点的最大层数。上图中树的高度为 4 。

二叉树

二叉树是一种树形结构,他的特点是每个节点至多只有两棵子树,即二叉树中不存在度大于2的结点。并且二叉树的子树有左右之分,其次序不能够颠倒。

二叉树的性质

(1)在二叉树的第i层上至多有2^(i-1)个结点(i>=1)。

(2)深度为k的二叉树至多有2^k-1个结点。

(3)对任意一棵二叉树T,如果其终端结点数为N0,度为2的结点数为N2,则N2=N0-1;

满二叉树:一棵深度为K且具有2^k-1个结点的二叉树,称为满二叉树。(在不改变深度的情况下无法再继续加入结点)

完全二叉树:满足以下两个条件的二叉树

                   1.除去最后一层后为满二叉树。

                   2.最后一层的结点必须依次从左往右编排。

当时老师给了个练习,一开始并没想明白,发现还是只看概念还是太不靠谱,所以摆上来:

问题:结点数为699的完全二叉树的叶子结点的数量为多少?

解答:(1) 699 = n2 + n1 + n0
                       = 2*n2 + n1 +1
           (2) 结点为奇数的完全二叉树的n1为0
                699 = 2*n2 +1
                ==> n2 = 349
                       n0 = 350

(4)具有n个结点的完全二叉树深度为(log2N)+1,向下取整

(5)具有n个结点的完全二叉树,如果自上而下,自左到右,从1到n进行编号,那么: 编号为i的结点,它的左子结点(如果有)的编号为2i,右子结点(如果有)的编号为2i+1,它的父结点(如果有)编号为i/2

二叉树的遍历

如要访问树中的每个结点,使得每个结点均被访问一次,则需要对二叉树进行遍历,二叉树的遍历方式有三种,分别是先序遍历、中序遍历和后序遍历。

先序遍历:先访问根节点,然后再访问左孩子,最后访问它的右孩子,即 根 左 右;

中序遍历:先访问左孩子,然后在访问根节点,最后访问它的右孩子,即 左 根 右;

后序遍历:先访问左孩子,然后在访问右孩子,最后访问它的根节点,即 左 右 根;

三种遍历方式中的先、中、后均是对根节点访问顺序的描述,具体遍历方式如下:

在这里插入图片描述

图中二叉树的三种遍历结果:

先序:1、2、4、5、7、8、3、6

中序:4、2、7、5、8、1、3、6

后序:4、7、8、5、2、6、3、1

下面给出代码实现:

void pre(bitnode *t){  //先序 
	if(t==NULL) return;
	cout<<t->date;
	pre(t->lchild);
	pre(t->rchild);
}

void mid(bitnode *t){  //中序 
	if(t==NULL) return;
	mid(t->lchild);
	cout<<t->date;
	mid(t->rchild);
}

void post(bitnode *t){  //后序 
	if(t==NULL) return;
	post(t->lchild);
	post(t->rchild);
	cout<<t->date;
}
//其中lchild代表左孩子,rchild代表右孩子,*t为指向根结点指针

二叉排序树(又名二叉查找树)

具有以下性质的二叉树可以被称为二叉排序树:

1、若左子树不为空,则左子树上的所有结点都小于它的根节点;

2、若有子树不为空,则右子树上的所有结点都大于它的根节点;

3、左右子树也分别为二叉排序树。

二叉排序树构造代码:

#include<bits/stdc++.h>
using namespace std;

typedef struct bitnode{
	int date;
	struct bitnode *lchild,*rchild;
}bitnode;

bitnode *insert(bitnode *t,int num){
	bitnode *p=t;
	bitnode *pnew=(bitnode *)malloc(sizeof(*pnew));
	pnew->date=num;
	pnew->lchild=NULL;
	pnew->rchild=NULL;
	if(t==NULL) t=pnew;
	else{
		while(1){
			if(num>p->date){
				if(!p->rchild){
					p->rchild=pnew;
					break;
				}
				else p=p->rchild;
			}
			else if(num<p->date){
				if(!p->lchild){
					p->lchild=pnew;
					break;
				}
				else p=p->lchild;
			}
			else break;
		}
	}
	return t;
}
bitnode *create_tree(){
	bitnode *t=NULL;
	int num;
	while(1){
		cin>>num;
		if(!num) break;
		t=insert(t,num);
	}
	return t;
}

int main(){
	bitnode *t;
	t=create_tree();
	return 0;
}

平衡二叉树

具有以下性质的二叉树被称为平衡二叉树:

1、左子树与右子树的深度之差绝对值不超过1;

2、它的左子树与右子树也都为平衡二叉树。

把不平衡的二叉树转换为平衡的二叉树有四种方式,分别为单向右旋平衡处理、单向左旋平衡处理、双向旋转(先左后右)平衡处理、双向旋转(先右后左)平衡处理。

1、单向右旋平衡处理

2、单向左旋平衡处理

3、双向旋转:先左后右

4、双向旋转:先右后左

代码实现(可以对照图进行理解,理解不了记住规律也可):

#include<bits/stdc++.h>
using namespace std;
typedef struct bitnode{
	int data;
	bitnode *lchild,*rchild;
	int height;
}bitnode;

int Height(bitnode *t){
	if(t==NULL) return 0;
	else return t->height;
}

bitnode *singler(bitnode *k2){  //单向右旋平衡处理 
	bitnode *k1=k2->lchild;
	k2->lchild=k1->rchild;
	k1->rchild=k2;
	k2->height=max(Height(k2->lchild),Height(k2->rchild))+1;
	k1->height=max(Height(k1->lchild),Height(k1->rchild))+1;
	return k1;
}

bitnode *singlel(bitnode *k2){  //单向左旋平衡处理 
	bitnode *k1=k2->rchild;
	k2->rchild=k1->lchild;
	k1->lchild=k2;
	k2->height=max(Height(k2->lchild),Height(k2->rchild))+1;
	k1->height=max(Height(k1->lchild),Height(k1->rchild))+1;
	return k1;
}

bitnode *doublelr(bitnode *k3){  //双向 先左后右 
	k3->lchild=singlel(k3->lchild);//对左孩子进行左旋 
	return singler(k3);//对根结点进行右旋 
}

bitnode *doublerl(bitnode *k3){  //双向 先右后左 
	k3->rchild=singler(k3->rchild);//对右孩子进行右旋 
	return singlel(k3);//对根结点进行左旋 
}

bitnode *insert(bitnode *t,int num){
	if(t==NULL){
		t=(bitnode *)malloc(sizeof(*t));
		t->data=num;
		t->lchild=NULL;
		t->rchild=NULL;
		t->height=1;
		return t;
	}
	if(num>t->data){//插在右子树 
		t->rchild=insert(t->rchild,num);
		t->height=max(Height(t->rchild),Height(t->lchild))+1;
		if(Height(t->rchild)-Height(t->lchild)>1){//插入后导致不平衡 
			if(num>t->rchild->data) t=singlel(t);//右深右插 单向左旋	
			else t=doublerl(t);//右深左插 双向先右后左 
		} 
	}
	else if(num<t->data){//插在左子树 
		t->lchild=insert(t->lchild,num);
		t->height=max(Height(t->rchild),Height(t->lchild))+1;
		if(Height(t->lchild)-Height(t->rchild)>1){//插入后导致不平衡 
			if(num<t->lchild->data) t=singler(t);//左深左插 单项右旋
			else t=doublelr(t); //左深右插	双向 先左后右 
		}
	} 
	return t;
}

bitnode *create_tree(){
	bitnode *t=NULL;
	int num;
	while(1){
		cin>>num;
		if(!num) break;
		t=insert(t,num);
	}
	return t;
}

int main(){
	bitnode *t=create_tree();
	return 0;
} 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值