2025美赛数学建模C题思路+模型+代码(1.24日第一时间更新)

2025美赛数学建模C题思路+模型+代码(1.24日第一时间更新),以下为对2023年的复盘

文章目录
前言
一、题目重述
拟解决的问题
我们的工作:
二、模型和计算
1.数据预处理
2.报告数量区间预测模型
3.猜词结果分布预测模型
3.词汇难度分类模型
碎碎念
前言
从论文浅整理一下思路,纯在想到什么说什么。没见过文章可能会有点懵。论文的原文大概在O奖论文集里能翻到。
老规矩我依旧是队伍中的编程手,比赛时候没怎么碰过文章。
我们是中文写完后整体翻译的英文,以下部分内容来自论文中文版的ctrl+cv。
排版很乱。

一、题目重述
Homer是棒球运动中的术语,是非正式的美式英语单词。令人惊讶的是,Homer(本垒打)在剑桥词典网站的搜索次数超过79000次,在5月5日这一天内被搜索65401次。就这样,Homer成为《剑桥词典》的2022年度词汇。可能你会好奇其中的原因,这就要从海外非常火的一款猜词游戏Wordle说起了。在2022年,在线益智游戏Wordle在社交媒体刷屏。而Wordle那天的答案是Homer,这难倒了不熟悉这个单词的非美国用户。
Wordle是目前《纽约时报》每日提供的一个热门谜题。Wordle的受欢迎程度不断提高,目前已有60多种语言版本。玩家可以选择的模式有“常规模式”或"困难模式"。玩家试图在六次或更少的尝试中猜测一个五字词来解决这个难题,每次猜测都会得到反馈,方块的颜色会发生变化(绿色、黄色、灰色)。注意:每个猜测都必须是英语中的一个实词。不被比赛认可为文字的猜测是不被允许的。


拟解决的问题
开发一个模型来解释报道结果的数量变化,并创建2023年3月1日报告结果的数量预测区间。分析单词的属性对玩家的模式选择的影响程度。
开发一个模型来预测报告结果的分布。分析模型和预测存在的不确定性因素。
开发一个模型来分类解答词难度。识别与每个分类相关联单词的属性。
描述数据集的其他有趣特征。
(大致能看出来,三个问题,最后一个语文建模。后来我们发现把前三个问踩过的坑扔到第四问,就够了。)

我们的工作:
我们共提出了三个模型来挖掘报告结果数据的信息。
本文的其余部分组织如下。第二部分介绍了本文的前提假设与合理解释。第三节提及了文中使用的公式中的常用变量。第四节进行了建模前对的数据预处理工作。第五节建立了报告数量区间预测模型,并探索了单词属性与模式选择的关系。第六

### 解决方案概述 针对2025国大学生数学建模(CUMCM)C,假设该目涉及复杂系统优化问,可以借鉴多LLM路由系统的理念来设计解决方案。具体而言,可以通过构建类似于TO-Router的框架,利用多个大型语言模型(LLMs)的能力来处理不同方面的子问[^1]。 对于此类问,通常会涉及到排队论的应用场景。基于给定参数如服务器数量(c),队列容量(k),实体总数(m),收入率(Income Rate),服务率(Service Rate),以及由此衍生的各项性能指标(如平均等待时间等)[^2],建立相应的数学模型是解决问的关键步骤之一。 ### 数学模型描述 考虑到可能存在的资源分配不均和服务效率低下等问,在此建议采用混合整数线性规划(MILP)作为主要求解工具。定义决策变量x_ij表示第i类请求被指派到j号处理器的概率;y_jk代表当有k个待处理项时开启额外辅助计算单元的状态(开/关)。目标函数设定为最小化总成本: \[ \min Z=\sum_{i}\sum_{j}c_{ij}x_{ij}+\lambda\sum_kd_ky_k \] 其中\(c_{ij}\)为将任务从源i转移到目的地j所需的费用;\(\lambda\)用于调节两部分权重的比例关系;而\(d_k\)则反映了启动备用设施所带来的固定支出。 约束条件包括但不限于: - 请求分发比例需满足概率性质:\[\sum_j x_{ij}=1,\forall i\] - 队列长度不可超过限定值:\[q_i(t)\le K, \forall t,i\] - 动态调整机制下的最大并发量控制:\[\sum_iz_{ijk}(t)\cdot s_j\le S_{max},\forall j,k,t\] 这里引入二元指示器\(z_{ijk}(t)\in{0,1}\),用来标记某时刻是否存在由位置i发出并指向节点j且携带数据包大小等于或小于阈值K的任务实例;同时设s_j表示单台机器每秒可完成的工作量,S_max为其上限。 ### Python代码实现示例 下面给出一段简单的Python伪代码片段,用于模拟上述过程中的核心逻辑运算环节: ```python import numpy as np from scipy.optimize import linprog def solve_milp_problem(cost_matrix, lambda_param, d_vector, max_service_rate): num_requests, num_servers = cost_matrix.shape # 构造系数矩阵A_ub 和 b_ub 来表达所有约束条件 A_ub = [] b_ub = [] # 添加关于请求分布的要求 for _ in range(num_requests): row = [1]*num_servers + [0]*(len(d_vector)) A_ub.append(row) b_ub.append(1) # 增加有关队列限制的信息 ... # 定义目标向量c c = list(cost_matrix.flatten()) + list(lambda_param * d_vector) res = linprog(c=c,A_ub=A_ub,b_ub=b_ub,integrality=[0]*len(c)) return res.x[:num_requests*num_servers].reshape((num_requests,num_servers)),res.x[num_requests*num_servers:] if __name__ == "__main__": # 初始化输入参数... optimal_solution = solve_milp_problem(...) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值