2025美赛数学建模B题:管理可持续旅游——思路+代码+模型

详细思路更新见文末名片

2025 MCM 问题 B: 管理可持续旅游


阿拉斯加州的朱诺(Juneau),人口大约为 30,000 人,在 2023 年创下了 160 万名邮轮游客的记录,在最繁忙的日子里接待多达七艘大型邮轮,游客数量高达 20,000 人左右【1】。虽然这些游客为城市带来了可观的收入,约为 3.75 亿美元【2】,但他们也带来了与过度拥挤相关的问题,迫使城市努力限制游客数量。讽刺的是,作为朱诺主要景点之一的门登霍尔冰川,由于温度升高而正在消退,部分原因是过度旅游。自 2007 年以来,冰川已经退缩了相当于八个足球场的距离,导致许多当地居民担心,随着冰川的消失,游客和相关的收入也将最终消失【3】。幸运的是,朱诺还有其他景点,包括观鲸和雨林,如果能够制定并实施可持续旅游的计划,仍然可以保持其作为旅游目的地的地位。

最近的报告【4】突显了旅游业的隐性成本,强调了需要考虑和管理这些成本,以保护自然和文化资源,并建立可持续的旅游业,许多依赖旅游的社区也需要这一点。这些隐性成本包括对当地基础设施的压力,包括饮用水供应、废物管理以及旅游目的地的整体碳足迹增加,许多目的地位于环境敏感区域。当地居民也面临住房供应和成本、过度拥挤以及游客行为不当的压力。为缓解这些负担,已经采取了各种措施,包括提高酒店税、游客费用、限制每日游客数量以及限制酒精

### 解决方案概述 针对2025国大学生数学建模(CUMCM)C,假设该题目涉及复杂系统优化问,可以借鉴多LLM路由系统的理念来设计解决方案。具体而言,可以通过构建类似于TO-Router的框架,利用多个大型语言模型(LLMs)的能力来处理不同方面的子问[^1]。 对于此类问,通常会涉及到排队论的应用场景。基于给定参数如服务器数量(c),队列容量(k),实体总数(m),收入率(Income Rate),服务率(Service Rate),以及由此衍生的各项性能指标(如平均等待时间等)[^2],建立相应的数学模型是解决问的关键步骤之一。 ### 数学模型描述 考虑到可能存在的资源分配不均和服务效率低下等问,在此建议采用混合整数线性规划(MILP)作为主要求解工具。定义决策变量x_ij表示第i类请求被指派到j号处理器的概率;y_jk代表当有k个待处理项时开启额外辅助计算单元的状态(开/关)。目标函数设定为最小化总成本: \[ \min Z=\sum_{i}\sum_{j}c_{ij}x_{ij}+\lambda\sum_kd_ky_k \] 其中\(c_{ij}\)为将任务从源i转移到目的地j所需的费用;\(\lambda\)用于调节两部分权重的比例关系;而\(d_k\)则反映了启动备用设施所带来的固定支出。 约束条件包括但不限于: - 请求分发比例需满足概率性质:\[\sum_j x_{ij}=1,\forall i\] - 队列长度不可超过限定值:\[q_i(t)\le K, \forall t,i\] - 动态调整机制下的最大并发量控制:\[\sum_iz_{ijk}(t)\cdot s_j\le S_{max},\forall j,k,t\] 这里引入二元指示器\(z_{ijk}(t)\in{0,1}\),用来标记某时刻是否存在由位置i发出并指向节点j且携带数据包大小等于或小于阈值K的任务实例;同时设s_j表示单台机器每秒可完成的工作量,S_max为其上限。 ### Python代码实现示例 下面给出一段简单的Python伪代码片段,用于模拟上述过程中的核心逻辑运算环节: ```python import numpy as np from scipy.optimize import linprog def solve_milp_problem(cost_matrix, lambda_param, d_vector, max_service_rate): num_requests, num_servers = cost_matrix.shape # 构造系数矩阵A_ub 和 b_ub 来表达所有约束条件 A_ub = [] b_ub = [] # 添加关于请求分布的要求 for _ in range(num_requests): row = [1]*num_servers + [0]*(len(d_vector)) A_ub.append(row) b_ub.append(1) # 增加有关队列限制的信息 ... # 定义目标向量c c = list(cost_matrix.flatten()) + list(lambda_param * d_vector) res = linprog(c=c,A_ub=A_ub,b_ub=b_ub,integrality=[0]*len(c)) return res.x[:num_requests*num_servers].reshape((num_requests,num_servers)),res.x[num_requests*num_servers:] if __name__ == "__main__": # 初始化输入参数... optimal_solution = solve_milp_problem(...) ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值