29. 两数相除
给定两个整数,被除数 dividend
和除数 divisor
。将两数相除,要求不使用乘法、除法和 mod 运算符。
返回被除数 dividend
除以除数 divisor
得到的商。
整数除法的结果应当截去(truncate
)其小数部分,例如:truncate(8.345) = 8
以及 truncate(-2.7335) = -2
示例 1:
输入: dividend = 10, divisor = 3
输出: 3
解释: 10/3 = truncate(3.33333..) = truncate(3) = 3
示例 2:
输入: dividend = 7, divisor = -3
输出: -2
解释: 7/-3 = truncate(-2.33333..) = -2
提示:
- 被除数和除数均为 32 位有符号整数。
- 除数不为 0。
- 假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−231, 231 − 1]。本题中,如果除法结果溢出,则返回 231 − 1。
class Solution {
public int divide(int dividend, int divisor) {
if(dividend == 0){
return 0;
}
// negative:是否有负号.minW:左移位数下界.maxW:左移位数上界.result:结果值。
boolean negative = false;
int minW = 0, maxW = 0, target, result = 0;
// 先判别有没有负号
if((dividend < 0 && divisor > 0) || (dividend > 0 && divisor < 0)){
negative = true;
}
// 用负号是因为负的下界大,可以装下-1 << 31。不要直接写上特殊例子到if里面,应该自己想办法解决溢出。
dividend = -Math.abs(dividend);
divisor = -Math.abs(divisor);
if(dividend > divisor){
return 0;
}
// 先找到最大的位数比如1042/10,如果使用二进制算法,最大的倍数应当是128倍,即7位
for(int i = 0;;){
target = divisor << i;
if(dividend - target < 0){
minW = i;
++i;
continue;
}
if(dividend - target > 0){
maxW = i;
--i;
// 如果两个位数都存在了,或者是1倍多,那就会出现maxW= 1,minW = 0的情况也可以退出循环
if(minW * maxW != 0 || maxW == 1){
break;
}
}
if(dividend - target == 0){
if(i != 31) {
return negative ? -1 << i : 1 << i;
} else {
return negative ? -1 << i : (1 << i) - 1;
}
}
}
// 转化为已知位数,求二进制值的问题
while(minW != -1){
target = divisor << minW;
if(dividend - target <= 0){
result += 1 << minW;
dividend = dividend - target;
if(dividend > divisor){
return negative ? -1 * result : result;
}
}
minW--;
}
return negative ? -1 * result : result;
}
}