微电子基础
第一讲——综述
基本概念和趋势
微电子学:微小型化系统和相关器件来传输和处理信息的科学。
摩尔定律:是经济和技术的综合规律,有经济运作的策略在。
多样化
微电子系统的基本原理:通过器件对0-1的信息进行统计和改动。
当下的前沿想法,是使用器件直接对模拟信号进行处理。
低功耗
高耗能的信息传输:奔跑传信;机械运算
而今:皮焦的计算耗能
智能化
主要应用:智能手机,物联网,类脑芯片
- 微电子是一门学科
- 半导体是一种材料
- 集成电路是一种电子系统
- 芯片是集成电路的集合
简要历史
重要里程碑:
- CMOS技术
- 非易失性存储器
- 单晶体管DRAM
- Intel微处理器
- 深硅通孔
华人:
年代 | 重要发明 | 发明人 | 研发单位 |
---|---|---|---|
1960 | 光纤 | 高锟 | ITT |
1963 | CMOS | 萨支唐 | 仙童 |
1967 | 非易失性存储器 | 施敏 | 贝尔实验室 |
1970 | 分子束外延 | 卓以和 | 贝尔实验室 |
1974 | 共振隧穿二极管 | 张立纲 | IBM |
分类
- CMOS,BiMOS
- 模拟、数字、混合
制造概述
流程
Fabless:IC、版图、掩模版
Foundry:晶圆、光刻、芯片制造
OSAT:封测、系统应用
- 通过几个阶段的分划,大大降低了工艺演进过程当中需要主要的衔接问题。
- OSAT(代工制造,封装测试)在三维集成技术的发展下,现阶段兴盛
形态变迁
IDM模式;
设计业、OSAT;
IP、设计业、OSAT
IP是用于ASIC或FPGA中的预先设计好的电路功能模块。往往是产业龙头,可以向上游设计业收取高额的专利费用
中国的许多自研芯片就是购买这些芯片才达成相对高性能的。
我国微电子产业概况
自研的14纳米已经量产;
128层QLC研出。
逻辑和存储“两条腿健全”。
第二讲——半导体物理基础
半导体
是一种电阻率介于绝缘体和导体之间的固体材料。
本征特性接近于绝缘体;而对外部调制因素灵敏,可以表现出导体的性质。
半导体简说
半导体的发现
- 1833,巴拉迪发现硫化银的电阻热敏现象(逆温)
- 1839,贝克莱儿发现光生伏特效应(电解液接触面上产生电压)
- 1873,史密斯进一步在无电解液的情形下,发现Se的光电导效应
- 1874,布劳恩发现硫化物的整流特性(单向导通)
- 1911,考尼贝格和维斯使用semiconductor
- ( ∗ \ast ∗)1947,肖克莱、巴丁和布莱顿在Ge上发明了第一支半导体晶体管
- 1949,皮尔森和巴丁给出了硅是半导体的证据
硅的兴起:
- 通信技术的需求;硅在高热下稳定,适用于高功率
- 贝尔实验室的单晶技术
- MOSFET的发明
硅和锗:硅和其氧化物都有更高熔点,密度更低,含量极高
半导体材料发展
-
Ge(1947——1958) Si(1962~)(第一代)
-
GaAs(1970)(第二代)
-
宽禁带GaN,SiC(1990)(第三代)
-
这个代际是利用禁带宽度来定义的
-
越宽的禁带意味着越好的耐压性。所制造的芯片就可以应用于更高速、高频、高功率的电子器件。
晶圆制造流程
Step1:冶金硅:
S
i
O
2
+
2
C
=
S
i
+
2
C
O
SiO_2+2C=Si+2CO
SiO2+2C=Si+2CO
Step2:粗硅提纯(6N);利用中间化合物(氯硅烷),提纯后,中间化合物换原
Step3:直拉单晶法(9N):J.Czochralski于1917年发明;核心思想是利用高能情形下的温度梯度(类似红薯糖棒从锅里转出来)。但仍然还存在不均匀的部分,所以需要抛光
硅的结构
硅单晶是由两个面心立方……的金刚石结构
硅中原子排布决定其特性
硅的共价键结构(电子不能自由移动,所以本征表现为绝缘体)
所以需要硅表现出导体性质,只能通过给电子提供高能量。
而可获得的能量一般来自晶格原子的热振动,室温下大约为~0.026V,远小于束缚能。
这是本征半导体(没有掺杂的半导体)的导电性差的原因
导体的本征激发
热激发:温度越高,自热激发的电子越多,就会表现出导体的性质
光激发:利用类观点效应,使得高能电子数增加。
本征半导体中电子和空穴往往同时产生消灭。
如何影响半导体的导电性
掺杂:注入、热扩散形成替位式杂质
用五族元素(donor)取代之后,会多出来一个价电子;用三族元素(acceptor)取代之后,会少一个价电子,对应产生空穴。总之都产生了自由载流子。
能带理论
背景
在一立方厘米的硅体中,至少存在100亿以上的电子,需要至少300亿个方程来描述,在数学上极其困难。
这些数以亿计的电子除了存在统计性的能量分布,其实在行为方式上并不归属于哪一个原子,即是共有化的。
为了简明地表示电子运动,我们可以将共有化的电子运动可以采用单电子近似,从而使得问题简化
能带的形成
- 单个电子在晶体中的运动可以认为是独立电子在离子和其他电子构成的等效势场中运动。
- 得到单电子的运动模式,通过能量分布的统计规律可以推知半导体中所有同类型电子的运动特性
- 同一个能级上的电子,为了适应泡利不相容原理,所以会分立成各个接近的轨道,组成能带。
- 分裂成能带之后,如果能带之间不重叠,就形成了禁带。
- 其中价电子所在的能级一般形成价带(不自由电子)
- 可自由运动的电子就形成导带。
- 共有化电子的量子态构成了半导体中的能带结构
能量表示:
- 价带:0K条件下被电子填充的能量最高的能带(价带以上能带为空);
- 导带:0K条件下未被电子填充的能量最低的能带
- 禁带:导带底与价带顶之间能带
定量分析在计算专题补充。
能带论的应用
可以利用能带分布,来解释不同导电性质固体的性质。
- 绝缘体导带为空,禁带带隙大
- 半导体导带部分填充,禁带带隙适中
- 导体导带半满,禁带带隙为零
从而我们将本征载流子的产生利用能带的语言描述为向上跃迁
为什么不跃迁到价带呢?因为价带上空能级很少,向下跃迁几率较低。
杂质补偿也可以使用能带论解释。那种杂质多,其载流子就占主导。施主多,就跃迁成导电电子(N型),受主多,就在价带中形成空穴(P型)。
热平衡方程(重点)
公式集锦
能带间能量关系
E
g
=
E
c
−
E
v
E_g=E_c-E_v
Eg=Ec−Ev
其中
E
c
E_c
Ec是导带底,
E
v
E_v
Ev是价带顶,
E
g
E_g
Eg是带隙/禁带宽度(注意:这个宽度是能量)
本征载流子密度
n型
n
=
N
c
e
−
E
c
−
E
F
k
T
n=N_ce^{-\frac{E_c-E_F}{kT}}
n=Nce−kTEc−EF
p型
p
=
N
v
e
E
v
−
E
F
k
T
p=N_ve^{\frac{E_v-E_F}{kT}}
p=NvekTEv−EF
热平衡方程
半导体无掺杂时,只和热平衡状态有关,称为热平衡方程。
n
p
=
N
c
N
v
e
−
E
c
−
E
v
k
T
=
N
c
N
v
e
−
E
g
k
T
=
n
i
2
np=N_cN_ve^{-\frac{E_c-E_v}{kT}}=N_cN_ve^{-\frac{E_g}{kT}}=n_i^2
np=NcNve−kTEc−Ev=NcNve−kTEg=ni2
非本征半导体与电中性条件
p + N D − n − N A = 0 p+N_D-n-N_A=0 p+ND−n−NA=0
以N型半导体为例,
N
D
>
>
N
A
N_D>>N_A
ND>>NA
退化成
p
+
N
D
−
n
=
0
p+N_D-n=0
p+ND−n=0
联立热平衡方程:
n
=
N
D
,
p
=
n
i
2
N
D
n=N_D,p=\frac{n_i^2}{N_D}
n=ND,p=NDni2
n型掺杂,p型掺杂,本征载流子浓度,电子浓度和空穴浓度