
📚30天吃掉那只 Tensorflow2.0
文章平均质量分 71
30天吃掉那只 Tensorflow2.0,完整的解释,完整的代码,并且有在线运行的代码进行,手把手教你30天吃掉那只Tensorflow2
风信子的猫Redamancy
在校本科大学生 B站up小白风信子的猫Redamancy 个人博客地址: https://kedreamix.github.io/
2022第十三届蓝桥杯PythonB组省一等奖,以及国赛一等奖
2022年第十二届MathorCup高校数学建模挑战赛 研究生组 二等奖
对计算机视觉,人工智能,以及机器学习等方面感兴趣
放弃不难 但坚持一定很酷
成功的法则极为简单,但简单并不代表容易
希望自己在这条路上,不孤单,不言弃,不言败
Stay Hungry,Stay Foolish
有时候没有及时回私信等等,可以发邮件咨询,1016617094@qq.com,你们的问题我都会认真看和回答的
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
《30天吃掉那只 TensorFlow2.0》 1-1 结构化数据建模流程范例 (titanic生存预测问题)
使用Keras接口有以下3种方式构建模型:使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型,继承Model基类构建自定义模型。此处选择使用最简单的Sequential,按层顺序模型。原创 2022-08-17 20:42:25 · 1730 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 开篇辞(Tensorflow 学习之路)
如果是工程师,应该优先选TensorFlow2.如果是学生或者研究人员,应该优先选择Pytorch.如果时间足够,最好TensorFlow2和Pytorch都要学习掌握。原创 2022-08-17 12:26:09 · 1803 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 5-1 数据管道Dataset
如果需要训练的数据大小不大,例如不到1G,那么可以直接全部读入内存中进行训练,这样一般效率最高。但如果需要训练的数据很大,例如超过10G,无法一次载入内存,那么通常需要在训练的过程中分批逐渐读入。使用 tf.data API 可以构建数据输入管道,轻松处理大量的数据,不同的数据格式,以及不同的数据转换。原创 2022-09-17 08:30:00 · 278 阅读 · 1 评论 -
《30天吃掉那只 TensorFlow2.0》五、TensorFlow的中阶API
如果把模型比作一个房子,那么中阶API就是【模型之墙】。优化器(tf.keras.optimizers)回调函数(tf.keras.callbacks)特征列(tf.feature_column)评估函数(tf.keras.metrics)损失函数(tf.keras.losses)模型层(tf.keras.layers)数据管道(tf.data)激活函数(tf.nn)原创 2022-09-16 18:00:00 · 339 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》4-5 AutoGraph和tf.Module
有三种计算图的构建方式:静态计算图,动态计算图,以及Autograph。TensorFlow 2.0主要使用的是动态计算图和Autograph。动态计算图易于调试,编码效率较高,但执行效率偏低。静态计算图执行效率很高,但较难调试。而Autograph机制可以将动态图转换成静态计算图,兼收执行效率和编码效率之利。当然Autograph机制能够转换的代码并不是没有任何约束的,有一些编码规范需要遵循,否则可能会转换失败或者不符合预期。前面我们介绍了Autograph的编码规范和Autogr原创 2022-09-16 13:31:43 · 244 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 4-4 AutoGraph的机制原理
静态计算图执行效率很高,但较难调试。而Autograph机制可以将动态图转换成静态计算图,兼收执行效率和编码效率之利。当然Autograph机制能够转换的代码并不是没有任何约束的,有一些编码规范需要遵循,否则可能会转换失败或者不符合预期。我们会介绍Autograph的编码规范和Autograph转换成静态图的原理。并介绍使用tf.Module来更好地构建Autograph。上篇我们介绍了Autograph的编码规范,本篇我们介绍Autograph的机制原理。...原创 2022-09-02 09:00:00 · 680 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》4-3 AutoGraph的使用规范
有三种计算图的构建方式:静态计算图,动态计算图,以及Autograph。TensorFlow 2.0主要使用的是动态计算图和Autograph。动态计算图易于调试,编码效率较高,但执行效率偏低。静态计算图执行效率很高,但较难调试。而Autograph机制可以将动态图转换成静态计算图,兼收执行效率和编码效率之利。当然Autograph机制能够转换的代码并不是没有任何约束的,有一些编码规范需要遵循,否则可能会转换失败或者不符合预期。我们将着重介绍Autograph的编码规范和Autog......原创 2022-09-01 09:00:00 · 5377 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 4-2 张量的数学运算
张量的操作主要包括张量的结构操作和张量的数学运算。张量结构操作诸如:张量创建,索引切片,维度变换,合并分割。张量数学运算主要有:标量运算,向量运算,矩阵运算。另外我们会介绍张量运算的广播机制。本篇我们介绍张量的数学运算。...原创 2022-08-31 09:00:00 · 5267 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 4-1 张量的结构操作
张量的操作主要包括张量的结构操作和张量的数学运算。张量结构操作诸如:张量创建,索引切片,维度变换,合并分割。张量数学运算主要有:标量运算,向量运算,矩阵运算。另外我们会介绍张量运算的广播机制。本篇我们介绍张量的结构操作。............原创 2022-08-30 18:30:00 · 5302 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 四、TensorFlow的低阶API
Autograph计算图我们将介绍使用Autograph的规范建议,Autograph的机制原理,Autograph和tf.Module.前面几章我们对低阶API已经有了一个整体的认识,本章我们将重点详细介绍张量操作和Autograph计算图。TensorFlow提供的方法比numpy更全面,运算速度更快,如果需要的话,还可以使用GPU进行加速。张量数学运算主要有:标量运算,向量运算,矩阵运算。张量结构操作诸如:张量创建,索引切片,维度变换,合并分割。张量的操作主要包括张量的结构操作和张量的数学运算。...原创 2022-08-30 09:00:00 · 5209 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 3-3 高阶API示范
下面的范例使用TensorFlow的高阶API实现线性回归模型和DNN二分类模型。TensorFlow的高阶API主要为**tf.keras.models提供的模型的类接口。使用Keras接口有以下3种方式构建模型:使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型,继承Model基类构建自定义模型。此处分别演示使用Sequential按层顺序构建模型以及继承Model基类构建自定义模型。...原创 2022-08-29 12:27:24 · 5328 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 3-2 中阶API示范
《30天吃掉那只 TensorFlow2.0》 3-2 中阶API示范下面的范例使用TensorFlow的中阶API实现线性回归模型和和DNN二分类模型。TensorFlow的中阶API主要包括各种模型层,损失函数,优化器,数据管道,特征列等等。.........原创 2022-08-26 22:43:25 · 5283 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 3-1 低阶API示范
下面的范例使用TensorFlow的低阶API实现线性回归模型和DNN二分类模型。低阶API主要包括张量操作,计算图和自动微分。原创 2022-08-25 18:20:30 · 5330 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 三、TensorFlow的层次结构
我们介绍TensorFlow中5个不同的层次结构:即硬件层,内核层,低阶API,中阶API,高阶API。并以线性回归和DNN二分类模型为例,直观对比展示在不同层级实现模型的特点。TensorFlow的层次结构从低到高可以分成如下五层。最底层为硬件层,TensorFlow支持CPU、GPU或TPU加入计算资源池。第二层为C++实现的内核,kernel可以跨平台分布运行。第三层为Python实现的操作符,提供了封装C++内核的低级API指令,主要包括各种张量操作算子、计算图、自动微分.如tf.原创 2022-08-24 23:26:10 · 5296 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 2-3 自动微分机制
《30天吃掉那只 TensorFlow2.0》 2-3 自动微分机制神经网络通常依赖反向传播求梯度来更新网络参数,求梯度过程通常是一件非常复杂而容易出错的事情。而深度学习框架可以帮助我们自动地完成这种求梯度运算。Tensorflow一般使用梯度磁带tf.GradientTape来记录正向运算过程,然后反播磁带自动得到梯度值。这种利用tf.GradientTape求微分的方法叫做Tensorflow的自动微分机制。...原创 2022-08-23 09:00:00 · 5318 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 2-2 三种计算图
计算图由节点(nodes)和线(edges)组成。节点表示操作符Operator,或者称之为算子,线表示计算间的依赖。实线表示有数据传递依赖,传递的数据即张量。虚线通常可以表示控制依赖,即执行先后顺序。[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EgJahy3u-1660975319432)(./data/strjoin_graph.png)]...原创 2022-08-22 09:00:00 · 5263 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 2-1 张量数据结构
2.1 Tensorflow的张量数据结构的介绍程序 = 数据结构+算法。TensorFlow程序 = 张量数据结构 + 计算图算法语言张量和计算图是 TensorFlow的核心概念。Tensorflow的基本数据结构是张量Tensor。张量即多维数组。Tensorflow的张量和numpy中的array很类似。从行为特性来看,有两种类型的张量,常量constant和变量Variable.常量的值在计算图中不可以被重新赋值,变量可以在计算图中用assign等算子重新赋值。...原创 2022-08-21 09:00:00 · 5246 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 二、TensorFlow的核心概念
(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,俗话说,万丈高楼平地起,TensorFlow这座大厦也有它的地基。Tensorflow底层最核心的概念是张量,计算图以及自动微分。...原创 2022-08-20 19:00:00 · 5157 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 1-4 时间序列数据建模流程范例 (国内新冠疫情结束时间预测问题)
使用Keras接口有以下3种方式构建模型:使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型,继承Model基类构建自定义模型。此处选择使用函数式API构建任意结构模型。原创 2022-08-20 10:10:48 · 5519 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 1-3 文本数据建模流程范例 (imdb电影评论分类问题)
使用Keras接口有以下3种方式构建模型:使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型,继承Model基类构建自定义模型。此处选择使用继承Model基类构建自定义模型。原创 2022-08-19 19:49:10 · 5284 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 1-2 图片数据建模流程范例 (cifar2图片分类问题)
使用Keras接口有以下3种方式构建模型:使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型,继承Model基类构建自定义模型。此处选择使用函数式API构建模型。原创 2022-08-18 11:10:59 · 1735 阅读 · 0 评论 -
《30天吃掉那只 TensorFlow2.0》 一、TensorFlow的建模流程
但为简洁起见,一般推荐使用TensorFlow的高层次keras接口来实现神经网络网模型。但通常人们使用TensorFlow来实现机器学习模型,尤其常用于实现神经网络模型。我们在实践中通常会遇到的数据类型包括结构化数据,图片数据,文本数据,时间序列数据。从原理上说可以使用张量构建计算图来定义神经网络,并通过自动微分机制训练模型。尽管TensorFlow设计上足够灵活,可以用于进行各种复杂的数值计算。用以上数据为例,演示应用tensorflow对这四类数据的建模方法。.....................原创 2022-08-17 12:32:04 · 1735 阅读 · 0 评论