最近接触了一些微信机器人的开源项目,分别做了些了解,觉得挺有意思,正好跟大家分享一些相关信息。
这些项目虽然基于不同的技术方案实现,但基本原理都一样,就是通过接管微信的消息处理通道,来实现微信信息的自动化处理。同时利用AI技术来扩展消息处理的能力,使微信号具备了AI的能力。
下面对这些项目做一些简单的对比分析。
一、开源项目介绍
我自己动手实践过两个开源项目,一个是WeChat Service,一个是chatgpt-on-wechat,这两个项目走的是不同的技术路线,各有利弊。
-
WeChat Service
项目名称 | WeChat Service |
项目地址 | https://github.com/ChisBread/wechat-service |
项目介绍 | 项目实现了监听并处理微信消息的闭环,但是项目本身并没有接入任何AI大模型,需要自己在消息处理环节接入大模型API |
技术路线 | 基于hook技术,注入dll劫持微信客户端,dll启动http服务代理微信的消息服务,客户端通过访问该服务,监听并处理微信消息 |
项目语言 | Python |
优势 | 理论上微信客户端具有的功能,都可以进行二次开发,包括朋友圈 |
劣势 | 需要基于微信客户端,并且依赖特定的微信版本以及hack工具 |
我最开始接触到的项目就是这个,需要使用微信3.9.2.23版本。这个项目相对没有那么完善,只能算是搭了一个框架,完成了基本的闭环,有些需要手动修改包括AI的接入。
-
chatgpt-on-wechat
项目名称 | chatgpt-on-wechat |
项目地址 | https://github.com/zhayujie/chatgpt-on-wechat |
项目介绍 | 项目比较完善,支持个人微信,企业微信、微信公众号、飞书、钉钉接入,可选择GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/LinkAI/ZhipuAI,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源,支持基于自有知识库定制企业AI应用。 |
技术路线 | 基于微信网页版协议,监听并处理微信消息 |
项目语言 | Python |
优势 | 不需要微信客户端,不依赖微信版本,微信扫描二维码登录即可使用 |
劣势 | 微信网页版不支持的功能无法开发,比如朋友圈相关功能 |
这个项目功能非常强大,可扩展性也很好,支持多种主流大模型。默认是接的chatgpt,我也尝试接过国内各家的大模型,都比较容易上手。
我们斑码的社群机器人也是基于这个项目。
-
openwechat
项目介绍:和chatgpt-on-wechat类似,都是基于微信网页版协议进行开发的,功能上也一致。
不同的是这个项目基于golang语言开发,熟悉go的朋友可以看下这个项目。
项目地址:https://github.com/eatmoreapple/openwechat
二、其他方案
上面介绍的几种方案都是基于代码hack的方式,理论上来说是有被限制的风险。
现在有一种基于RPA的方案,和上面基于代码的方案完全不同。它是通过自动化程序模拟人在微信客户端界面上的点击和输入行为,相当于有个机器人在帮你操作微信。
这种方案由于是模仿人的行为,所以是比较难被管控的,从风险角度来说是最低的,而且功能上几乎没有限制,只要是人能够进行的操作,RPA都可以实现。
但是这种方案也有其劣势,效率较低,而且很吃界面,不太适合快速处理大批量复杂的信息。
三、应用场景
社群天然带有社交和私域属性。因此社群机器人非常适合用来做个人或者企业的私域运营助手。
以下是我整理的一些社群机器人适合应用的场景:
应用场景 | 相关功能 |
个人助手 | 自动加好友,自动回复 |
群发售 | 入群溯源,群人数统计 |
群管理 | 自动建群,关键字入群,自动加人,自动踢人, 群成员信息获取 |
群运营 | 入群欢迎,早晚安问候,技术日报,群发消息, 定时消息,群聊总结,群数据分析 |
智能客服 | 关键词回复,AI智能回复 |
朋友圈管理 | 自动发圈,自动评论,自动点赞 |
以上就是我对目前主流的开源微信机器人方案的一些粗浅分析,欢迎一起讨论。
更多精彩内容推荐:
-> AI智能体学习&实战
-> 私域AI机器人
-> 自媒体AIP打造
-> AI应用