新增对话流,大模型用上技能包,视觉理解起飞,Coze更新一览

coze这次更新涵盖不少内容,包括对话流,工作流,连带大模型,全都有重大变化。还有刚发布的视觉模型也用上了,下面我们就一起来说说。

对话流

先来看看这个对话流到底是什么?顾名思义就是用来对话的工作流,整体功能和之前的工作流差不多,最大区别就是多了一个对话历史的参数。

首先,在创建资源那里多了一个新的选择:对话流

图片

  

创建对话流以后会发现,在开始节点那里引入了一个 CONVERSATION NAME 作为输入参数。

这是用来记录历史对话消息的参数。也就是说你可以传入对话记录,并基于历史对话消息来处理本次的用户输入。

图片

这个CONVERSATION_NAME是置灰的,只能用默认值。输入方式是通过关联某个智能体,来获取这个智能体的历史会话消息。

因此在试运行对话流的时候,会强制你选择关联一个智能体,因为要用这个智能体的历史会话记录:

图片

大模型变强了

随着会话参数的引入,大模型节点也有了变化,加入了对话历史选项,这个是跟着对话流的CONVERSATION_NAME 的

图片

开启对话历史后,会自动把开始节点的入参CONVERSATION NAME 对应的会话上下文信息,发送给模型。这样大模型就可以根据之前的会话消息进行回复。

图片

图片

举个例子,我选择的关联智能体里已经有如下历史对话消息,是关于询问行星距离太阳距离的问题

图片

那我就可以直接问大模型:那木星呢?大模型会根据上下文信息,正确理解并做出回答

图片

图片

注意:要使用对话流的历史会话的功能,那就必须打开大模型的对话历史开关,否则即使开始节点有CONVERSATION NAME这个参数也没用

如果我关掉大模型的对话历史开关以后,再询问海王星,它就只给我回答关于海王星的基本数据了,而不是距离。

图片

关于对话流的对话历史功能大概就是这样。

这次大模型节点的另外一个变化就是,大模型支持自带技能了。节点里多了一个技能配置,可以在这里给大模型添加各种技能

图片

例如,我给大模型添加了搜索插件,这样它就可以联网搜索内容了,比如我可以让它帮我搜openai的动态,这个以前在大模型节点是做不到的。

图片

图片

再升级一下,我给大模型同时加了搜索和链接读取的技能,那么我就可以让他来做网页内容总结了,很好的帮我总结了字节跳动主页的内容

图片

图片

这里要注意,如果添加了技能这大模型一定要选择Function Call类型的,否则会报错,因为插件相当于要调用外部函数

图片

新的工作流

有别于对话流,现在的新工作流则“退化”了,区别也是在开始节点,没有了用户输入参数USER_INPUT了,也就是说它不直接处理用户输入的内容了,如下

图片

那这种工作流有什么用呢?程哥觉得,它适合那种独立的处理逻辑,嵌入在一个大的对话流里,不需要直接获取用户输入的场景

图片

最强视觉理解模型

字节还正式发布了他们的最强视觉大模型豆包视觉理解Pro,图片理解能力非常强悍,根据实际测评结果,能把4o摁在地上摩擦,有兴趣可以看卡兹克的这篇文章:

一手实测豆包新发布的视觉理解大模型,他们真的卷起飞了。

这个模型在扣子平台上已经同步支持了,大模型的选项里直接可以选“豆包 视觉理解 Pro”,图片理解直接起飞🛫

图片

不过比较可惜的是,我试了下目前好像还不支持视频理解:

图片

进击的扣子

扣子这段时间更新频频,先是更新了网页界面,后又统一了工作流和图像流,再后来又推出扣子应用,现在又新增对话流和视觉大模型。

更新功能是好事,比如视觉模型,大模型技能配置,所以coze一直领跑国内智能体平台,必须给coze点赞!

但是有些更新直接影响到基础框架的使用,比如我们社群里现在还有人会问图像流去哪了这样的问题。说明基础框架的变动影响较大,需要一些时间去适应和普及,因此这类变更我个人认为要尽量减少。

大家对coze更新的看法如何?欢迎评论区留言,咱们一起去给字节提提意见去

更多精彩内容推荐:

-> AI智能体学习&实战

-> 私域AI机器人

-> 自媒体AIP打造

-> AI应用

### Coze对话引擎中的追问机制设计 在Coze平台中,设计追问流程的核心在于利用其内置的多轮对话能力以及上下文记忆功能[^1]。具体来说,可以通过配置Bot Studio中的节点逻辑来实现追问机制的设计。 #### 1. 多轮对话的基础结构 多轮对话通常由以下几个部分组成: - **初始提问**:用户发起的第一个问题。 - **条件判断**:根据用户的输入内容触发不同的分支逻辑。 - **追问提示**:当检测到用户未提供足够的信息时,系统主动发出进一步询问。 以下是基于Coze Bot Studio的一个简单追问流程示例: ```python # 定义对话状态机 states = { 'start': {'message': "您好,请告诉我您需要解决的问题是什么?", 'next_state': 'collect_problem'}, 'collect_problem': { 'message': "好的,请描述您的问题详情。", 'condition': lambda user_input: len(user_input.split()) >= 5, 'on_success': 'confirm_details', 'on_failure': 'ask_for_more_info' }, 'ask_for_more_info': { 'message': "请您补充更多细节以便更好地帮助您。", 'next_state': 'collect_problem' # 返回收集更多信息的状态 }, 'confirm_details': { 'message': "我已经了解了您的问题,确认无误吗?", 'options': ['是', '否'], 'on_select_yes': 'end_conversation', 'on_select_no': 'collect_problem' }, 'end_conversation': {'message': "感谢您的反馈,我们会尽快处理!"} } def process_user_input(current_state, user_input): state_config = states[current_state] if 'condition' in state_config and callable(state_config['condition']): if not state_config['condition'](user_input): # 条件不满足则进入追问环节 return state_config['on_failure'] if 'options' in state_config: selected_option = get_selected_option(user_input, state_config['options']) if selected_option == '是': return state_config['on_select_yes'] elif selected_option == '否': return state_config['on_select_no'] return state_config.get('next_state') ``` 上述代码展示了如何通过定义状态机的方式管理多轮对话,并在必要时启动追问过程[^2]。 #### 2. 结合知识库提升追问效果 为了使追问更加精准有效,可以集成Coze的知识库模块。例如,在某些特定领域(如技术支持),可以根据预设的知识条目动态生成追问语句[^3]。 假设有一个关于产品安装的技术支持场景,则可以在知识库中预先存储常见问题及其对应的解决方案模板。如果用户提到的内容模糊不清,系统可以从这些模板出发构建更具体的追问请求。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程哥聊AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值