用Python实现图片风格迁移,让你的图片更加的高逼格!

本文介绍如何使用Python和深度学习实现图片风格迁移,通过OpenCV快速完成艺术风格转换,让你的图片瞬间提升艺术感。内容包括风格迁移的基本原理、基于OpenCV的实现方法,以及相关进展。
摘要由CSDN通过智能技术生成

先来看下效果:

上图是老王在甘南合作的米拉日巴佛阁外面拍下的一张照片,采用风格迁移技术后的效果为:

一些其它效果图:

下面进入正题。

如果你依然在编程的世界里迷茫,可以加入我们的Python学习扣qun:784758214,看看前辈们是如何学习的。从基础的python脚本到web开发、爬虫、django、数据挖掘等,0基础到项目实战的资料都有整理。送给每一位python的小伙伴!每天分享学习方法和趣味实战教程,技术经验!点击加入我们的 python学习者聚集地

近年来,由深度学习所引领的人工智能(AI)技术浪潮,开始越来越广泛地应用到生活各个领域。这其中,人工智能与艺术的交叉碰撞,在相关技术领域和艺术领域引起了高度关注。就在上个月,由电脑生成的艺术品在佳士得(Christie’s)的拍卖价竟高达43.25万美元,证明人工智能不仅可以具有创造性,还可以创作出世界级的艺术品。

早些时候,有些人坚信艺术的创造力是人工智能无法替代的,艺术将是人类最后一片自留地!这不,没过多久,这片唯一的自留地也逐渐被人工智能所取代。

在这各种神奇的背后,最核心的就是基于深度学习的风格迁移(style transfer)技术。我将在这篇博客带领大家学习如何使用Python来快速实现图片的风格迁移。阅读完本博客后,相信你也能够创造出漂亮的艺术品。

1. 什么是图片的风格迁移?

所谓图片风格迁移,是指利用程序算法学习著名画作的风格,然后再把这种风格应用到另外一张图片上的技术。

举个例子,见上图。左边是我们的原始图片(也称内容图像):小编在苏州甪直古镇的一座小桥上拍下的一张照片。

中间是我们的风格图片:挪威表现派画家爱德华**·**蒙克的代表作《呐喊》(The Scream)。

右边是将爱德华**·蒙克的《呐喊》的风格应用于原始图片后生成的风格化结果图**。仔细观察,图片是如何保留了流水、房屋、房屋在水中的倒影,甚至远处树木的内容,但却运用了《呐喊》的风格,就好像爱德华**·**蒙克在我们的景色中运用了他高超的绘画技巧一样!

问题是,我们应该定义一个什么样的神经网络来执行图片的风格迁移?

这可能吗

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值