Khalil Fang@1010
码龄5年
关注
提问 私信
  • 博客:16,253
    16,253
    总访问量
  • 32
    原创
  • 489,152
    排名
  • 6
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2019-08-13
博客简介:

weixin_45524021的博客

查看详细资料
个人成就
  • 获得4次点赞
  • 内容获得1次评论
  • 获得23次收藏
创作历程
  • 9篇
    2021年
  • 24篇
    2020年
成就勋章
TA的专栏
  • Java进阶
  • 英语
  • 动态规划
  • 机考算法
  • 数据结构和算法
  • hive
    6篇
  • Flink
    8篇
  • C语言
    1篇
  • sql
    10篇
  • scala
    2篇
  • Kafka入门
    1篇
  • Git详解
    1篇
  • maven
    1篇
  • redis
    1篇
兴趣领域 设置
  • 编程语言
    r语言
  • 大数据
    mysqlredis
  • 后端
    spring架构
  • 微软技术
    c#.netasp.net
  • 搜索
    elasticsearch
  • 服务器
    linux
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

关于sqoop把数据从hive导出到 mysql报错:Job job_1606700530042_12034 failed with state FAILED due to: Task failed

从azkaban中提示出的错误信息,可以知道整个任务的失败,是由于这个地方从日志信息中,看不出来什么东西,所以要定位到hadoop的yarn中调度的这个任务点击查看历史信息中的 logs 中的 full log,仔细查看后发现: mysql 中这个字段值类型设置了 不能为 Null, 而数据中有部分数据是 null,所以导致了失败。修改值类型之后,再次运行 Sqoop 的任务执行成功了。...
原创
发布博客 2021.03.06 ·
702 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Flink学习笔记之 Window

类似SparkStreaming这种流式计算,但我们处理无限数据集已经由 批处理转向到流处理,而window 是一种切割无限数据为有限块进行处理的。Window 是无线数据流处理的核心, Window 将一个无限的 stream 拆分成有限大小的 "buckets" 桶, 可以在这些桶上进行操作计算。Window 类型Window 可以分成两类:CountWindow:按照指定的数据条数生成一个 Window, 与时间无关。 TimeWindow: 按照时间生成 Window。对于 Tim
原创
发布博客 2021.01.14 ·
212 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Flink学习笔记之实现UDF函数--- 更细粒度的控制流

函数类(Function Classes)Flink 暴露了所有 udf 函数的接口(实现方式为接口或者抽象类)。例如 MapFunction,FilterFunction,ProcessFunction等等。下面例子实现了 FilterFunction 接口:方式1DataStream<String> flinkTweets = tweets.filter(new FlinkFilter());public static class FlinkFilter implements
原创
发布博客 2021.01.14 ·
255 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Flink学习笔记之DataStream API 简介

什么能被转化成流?Flink 的 Java 和 Scala DataStream API 可以将任何可序列化的对象转化为流。Flink自带的序列化器有基本类型:即 String、Long、Integer、Boolean、Array 复合类型:Tuples、POJOS、和 Scala case classes 而且 Flink 会交给 Kryo 序列化其他类型。也可以将其他序列化器和 Flink 一起使用。特别是有良好支持的 Avro。Java tuples 和 POJOSFink 的.
原创
发布博客 2021.01.13 ·
217 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Flink学习笔记之有状态流处理

什么是State?尽管数据流中的许多操作一次仅查看一个事件(例如事件解析器),但某些操作会记住多个事件的信息(例如窗口运算符)。这些操作称为有状态。有状态操作的一些示例:当应用程序搜索某些事件模式时,状态将存储到目前为止遇到的事件序列。 在每分钟/小时/天汇总事件时,状态将保留待处理的汇总。 在数据点流上训练机器学习模型时,状态保持模型参数的当前版本。 当需要管理历史数据时,该状态允许有效访问过去发生的事件。Flink 需要了解状态,以便使用检查点 和 保存点来使其容错。关于状态的知
原创
发布博客 2021.01.13 ·
471 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Flink学习笔记之Flink架构

Flink 是一个分布式系统,需要有效分配和管理计算资源才能执行流应用程序。它集成了所有常见的集群资源管理器,例如 Hadoop YARN 、Apache Mesos 和 Kubernets,但也可以设置作为独立集群甚至库运行。本节概述了 Flink 架构,并且描述了其主要组件如何交互以执行应用程序和从故障中恢复。Flink集群剖析Flink 运行时由两种类型的进程组成:一个 JobManager 和 一个或者多个 TaskManager。Client 不是运行时和程序执行的一部分.
原创
发布博客 2021.01.13 ·
210 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

Flink学习笔记之运行时组件(二)

程序与数据流(DataFlow)所有的Flink程序都是由三部分组成的: Source、Transformation 和 sink。 Source 负责读取数据源,Transformation 利用各种算子进行处理加工, Sink 负责输出。在运行时,Flink上运行的程序会被映射成 "逻辑数据流" (dataflows),它包含了三个部分。每一个dataflow以一个 sources 开始以一个或多个 sinks 结束。 dataflow 类似于任意的有向无环图(DAG)。在大部分情况下,程序
原创
发布博客 2021.01.13 ·
159 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Flink学习笔记之运行时组件(一)

Flink 运行时架构主要包括四个不同的组件,它们会在运行流处理应用程序时协同工作:作业管理器(JobManager)、资源管理器(ResourceManager)、任务管理器(TaskManager)以及分发器(Dispatcher)。因为Flink是用 Java 和 Scala 实现的,所以所有组件都会运行在 Java 虚拟机上。每个组件的职责如下:作业管理器(JobManager) 控制一个应用程序执行的主进程,也就是说,每个应用程序都会被一个不同的 JobManager 所控制执行。JobMa
原创
发布博客 2021.01.09 ·
134 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Flink学习笔记之提交任务

提交任务的形式有多种一、Web页面提交方式在集群启动之后, 在localhost:8081 可以很清楚的查看到 集群的运行状态, TaskManager、JobManager等等。打包处理的时候还会涉及并行度的问题,我们可以根据情况自行设置。并行度问题:env 可以设置环境的并行度,每一步操作都可以设置 setParallelism 并行度。并行度优先级: 代码 -》全局 -》提交JobWeb-》集群配置文件默认并行度。show plan 查看执行的...
原创
发布博客 2021.01.09 ·
1239 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

C语言学习之指针入门

指针入门 每个变量都有一个内存位置,每一个内存位置都定义了可使用 & 运算符访问的地址,它表示了在内存中的一个地址。 #include<stdio.h>void main(){ int var_runnob = 10; int *p; p = &var_runnob; // 定义指针变量 printf("var_1 变量的的地址:%p
",p); // %p 指针形式十六进制表示的地址 getchar();} 当
原创
发布博客 2020.12.30 ·
76 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SQL性能优化

SQL性能优化针对关系型数据库 Mysql先简单梳理下 Mysql 的基本概念,然后分创建时和查询时这两个阶段的优化展开。1. 基本概念简述1.1 逻辑架构第一层:客户端通过连接服务,将要执行的 sql 指令传输过来。第二层:服务器解析并优化 sql,生成最终的执行计划并执行第三层:存储引擎,负责数据的存储和提取。1.2 锁数据库通过锁机制来解决并发场景,共享锁(读锁) 和 排他锁(写锁)。读锁是不阻塞的,多个客户端可以在同一时刻读取同一个资源。写锁是排他的,并且会阻塞其他的读锁和写
原创
发布博客 2020.11.30 ·
102 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Hive SQL练习一

准备数据本次实战要准备两个表:学生表和住址表,字段都很简单,如下图所示,学生表有个住址ID字段,是住址表里的记录的唯一ID:先创建住址表:create table address(addressid int,province string,city string)row format delimitedfields terminated by ',';创建 address.txt文件,内容如下:1,guangdong,guangzhou2,guangdong,shenzhen3
原创
发布博客 2020.11.27 ·
250 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Hive 内部表和外部表

针对于Hive 的 建库建表操作建库 内部表(也叫管理表和临时表) 外部表 表的操作 建库创建名为 test 的数据库(仅当不存在是才创建),添加备注信息 test database: create database if not exists testcomment 'this is a database for test'; 查看数据库列表(名称模糊匹配): show databases like 't*';OKtesttest001Tim...
原创
发布博客 2020.11.27 ·
307 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Hive 复杂数据类型

复杂数据类型一共有四种:ARRAY:数组 MAP:键值对 STRUCT:命名字段集合 UNION:从几种数据类型中指明选择一种,UNION的值必须于这些数据类型之一完全匹配; ARRAY创建名为 t2的表,只有 person 和 friends 两个字段, person 是字符串类型, friends 是数组类型,通过文本文件导入数据时,person 和 friends之间的分隔符是竖线,friends 内部的多个元素之间的分隔符是逗号, 注意分隔符的语法: create t..
原创
发布博客 2020.11.27 ·
2499 阅读 ·
0 点赞 ·
0 评论 ·
10 收藏

Hive 基本数据类型

Hive支持基本和复杂数据类型:基本数据类型:数值型、布尔型、字符串类型和时间戳类型; 复杂数据类型:数组、映射、结构;基本数据类型:类型 实例 TIMESTAMP ‘2020-11-20 00:00:00’ DATE ‘2020-11-20’ 关于三种字符串STRING,变长,无需最大长度声明,理论上能存储 2GB字符; VARCHAR,变长,需要声明最大长度(1~65535之间),例如 VARCHAR(100); CHAR,定长,如CHAR(..
原创
发布博客 2020.11.27 ·
1055 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Scala实现网络通信

用Scala实现一台机器到另一台机器的分布式计算功能配置文件summer.propertiesserver.port = 9999server.host = localhost【读取配置文件工具类】object PropertiesUtil{ // 绑定配置文件 // ResourceBundle用于读取配置文件,所以读取时,不需要增加扩展名 val summer: ResourceBundle = ResourceBundle.getBundle("summer") def get
原创
发布博客 2020.11.01 ·
422 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Scala教程(一)

简介:Scala是一门多范式(multi-paradigm)的编程语言,设计初衷是要集成面向对象编程和函数式编程的各种特性。Scala运行在Java虚拟机上,并兼容现有的Java程序。Scala源代码被编译成Java字节码,所以它可以运行于JVM上,并可以调用现有的Java类库。...
原创
发布博客 2020.10.29 ·
333 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

hive中with..as与 inser... select 连用

with...as...也叫做子查询部分,语句允许 hive 定义一个sql片段,供整个sql使用简介with…as… 需要定义一个sql片段,会将这个片段产生的结果集保存在内存中,h后续的sql均可以访问这个结果集,它的作用与视图或临时表类似。语法限制1.with…as…必须和其他sql一起使用(可以定义一个with但在后续语句中不使用他)2.with…as…是一次性的with…as…的完整格式是这样的--with table_name as(子查询语句) 其他sqlwith temp
转载
发布博客 2020.10.26 ·
1638 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

简单说明什么是回调函数

一、字面意思回调函数:假设 A 是 回调函数,B是调用者,B参数里一个是指向A函数的指针,即回调A,同时另外的参数传递给A作为参数。A可以是多个函数的统一指向,只要函数参数个数相同即可。B调用A,A也有参数,有参数就要赋值才行。所以B函数内部给A参数赋值。B调用A,A又利用了B给的参数。A就是回调函数。B就是调用者。二、代码理解def calc(a,c,fn): # fn是回调函数,在传参的时候不能加fn() c = fn(a,b) # calc把其他参数赋值给回调函数fn的参数 re
原创
发布博客 2020.10.14 ·
166 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Nginx服务器搭建和基本配置详解

Nginx(engine X)是一个高性能的HTTP服务器和反向代理服务器,这款软件开发的目的是为了解决C10K问题。Nginx的架构利用了许多现代操作系统的特性,以实现一个高性能的HTTP服务器。例如在Linux系统上,Nginx使用了epoll,sendfile,File AIO,DIRECTIO等机制,使得Nginx不仅性能高效,而且资源占用率非常低,官方宣称nginx维持10000个非活动的HTTP keep-alive连接仅需要 2.5M内存。Nginx会按需同时运行多个进程:一个主进程(m
原创
发布博客 2020.09.25 ·
549 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多