图解 PRC 原理

RPC(Remote Procedure Call)是实现分布式系统中服务间透明调用的技术。本文详细介绍了RPC的概念、应用场景、框架原理和服务调用过程,探讨了RPC与HTTP的区别,并讨论了其优缺点。RPC简化了服务调用,适用于需要高性能、高并发和解耦的分布式环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PRC(Remote Procedure Call)

PRC 概念

RPC(Remote Procedure Call)——远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。

RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发包括网络分布式多程序在内的应用程序更加容易。

它是一个计算机通信协议,这个协议允许运行在一台计算机的程序调用另一台计算机的子程序。

总结:RPC 可以说是一种框架或者说一种架构(方法思想),主要目标就是让远程服务调用更简单、透明,调用远程就像调用本地一样

也可以把RPC类比成一个方法,RPC 的实现可能也会用到HTTP

PRC 应用场景

如果我们开发简单的应用,业务流程简单、流量不大,根本用不着 RPC。

当我们的应用访问量增加和业务增加时,发现单机已无法承受,此时可以根据不同的业务(

### PRC-AUC 的概念与计算方法 PRC-AUC 是指 Precision-Recall 曲线下的面积(Area Under the Curve),它是一种用于评估分类模型性能的重要指标,尤其是在正类样本较少的情况下更为适用。Precision 和 Recall 定义如下: - **Precision** 表示在所有被预测为正类的样本中,真正属于正类的比例[^1]。 \[ \text{Precision} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Positives}} \] - **Recall** 表示在所有实际为正类的样本中,成功识别出来的比例。 \[ \text{Recall} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}} \] #### 计算方法 为了计算 PRC-AUC,通常采用以下两种方式之一: 1. **数值积分法** 使用梯形法则或其他数值积分技术来近似曲线下的面积。假设我们有 \( n \) 对精度和召回率数据点 \((R_i, P_i)\),则可以按照以下公式估算 AUC 值: \[ \text{AUC}_{\text{PRC}} = \sum_{i=1}^{n-1} \left( R_{i+1} - R_i \right) \cdot \frac{P_{i+1} + P_i}{2} \] 这里每一项表示两个相邻点之间的梯形区域面积[^3]。 2. **基于阈值的方法** 遍历不同的决策阈值并记录对应的 precision 和 recall 值,从而绘制出完整的 PR 曲线。随后通过上述积分方法求得曲线下方总面积即可得到最终结果。 值得注意的是,在某些情况下可能还需要考虑平滑处理或者插值操作以便更精确地反映真实情况。 ```python from sklearn.metrics import auc, precision_recall_curve def compute_prc_auc(y_true, y_scores): """ Compute Area Under the Precision-Recall Curve. Parameters: y_true : array-like of shape (n_samples,) True binary labels. y_scores : array-like of shape (n_samples,) Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions. Returns: prc_auc_value : float The computed area under the precision-recall curve. """ precisions, recalls, _ = precision_recall_curve(y_true, y_scores) prc_auc_value = auc(recalls, precisions) return prc_auc_value ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我心向阳iu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值