文章目录
Baostock数据获取与分析
引言
随着金融市场日益复杂,投资者对于全面了解市场情势的需求也日益增长。在这一背景下,Baostock成为许多金融专业人士和数据分析师的首选工具之一。本文将深入研究如何通过Baostock API接口获取不同类型的指数K线数据,包括综合指数、规模指数、一级行业指数、二级行业指数、策略指数、成长指数、价值指数、主题指数等。我们将透过代码案例、概念解释、生动抽象的例子等方式,带领读者深入了解如何更好地利用这一强大工具进行金融市场分析。
Baostock API简介
Baostock API为开发者提供了一个方便而高效的途径,通过编程的方式获取金融数据。在这个过程中,首先需要安装Baostock Python SDK,并获得相应的API密钥。这一步骤的详细指南可参考Baostock官方文档。
随后,我们可以通过简单的Python代码来调用API,获取我们感兴趣的指数数据。
# 示例代码,导入Baostock SDK
import baostock as bs
数据获取API
获取代码官方网站里有简单的例子:
import baostock as bs
import pandas as pd
# 登陆系统
lg = bs.login()
# 显示登陆返回信息
print('login respond error_code:'+lg.error_code)
print('login respond error_msg:'+lg.error_msg)
# 获取指数(综合指数、规模指数、一级行业指数、二级行业指数、策略指数、成长指数、价值指数、主题指数)K线数据
# 综合指数,例如:sh.000001 上证指数,sz.399106 深证综指 等;
# 规模指数,例如:sh.000016 上证50,sh.000300 沪深300,sh.000905 中证500,sz.399001 深证成指等;
# 一级行业指数,例如:sh.000037 上证医药,sz.399433 国证交运 等;
# 二级行业指数,例如:sh.000952 300地产,sz.399951 300银行 等;
# 策略指数,例如:sh.000050 50等权,sh.000982 500等权 等;
# 成长指数,例如:sz.399376 小盘成长 等;
# 价值指数,例如:sh.000029 180价值 等;
# 主题指数,例如:sh.000015 红利指数,sh.000063 上证周期 等;
# 详细指标参数,参见“历史行情指标参数”章节;“周月线”参数与“日线”参数不同。
# 周月线指标:date,code,open,high,low,close,volume,amount,adjustflag,turn,pctChg
rs = bs.query_history_k_data_plus("sh.000001",
"date,code,open,high,low,close,preclose,volume,amount,pctChg",
start_date='2017-01-01', end_date='2017-06-30', frequency="d")
print('query_history_k_data_plus respond error_code:'+rs.error_code)
print('query_history_k_data_plus respond error_msg:'+rs.error_msg)
# 打印结果集
data_list = []
while (rs.error_code == '0') & rs.next():
# 获取一条记录,将记录合并在一起
data_list.append(rs.get_row_data())
result = pd.DataFrame(data_list, columns=rs.fields)
# 结果集输出到csv文件
result.to_csv("D:\\history_Index_k_data.csv", index=False)
print(result)
# 登出系统
bs.logout()
运行结果:
其中使用了query_history_k_data函数来获取股票的数据,下面我们来解析下这个函数:
query_history_k_data函数解析
query_history_k_data
是 Baostock API 中用于获取股票、指数等历史K线数据的函数。这个函数接受多个参数,用于指定查询的条件和返回的数据格式。
以下是对 query_history_k_data
函数的主要参数的解析:
函数原型:
query_history_k_data(code, fields, start_date, end_date, frequency)