线性回归
回归问题判定:
目标值为连续性的值
例子
:销售额预测、贷款额度预测、
线性关系:
二维—直线关系
三维:
特征值,目标值,平面中


矩阵运算:
np.dot(a,b)

多变量条件下:真实值与预测值的误差

回归算法基本都是迭代算法,迭代更新参数
误差的表征:
损失函数
求解最优化权重的方法:
①正规方程—一次性求解(不通用—求解太复杂)

②梯度下降

后面算法基本都是通过梯度下降不断迭代进行优化—算法自我学习的过程
正规方程-梯度下降对比
API:


#仍然需要标准化-标准化后在得到预测结果后一定要反标准化,不然都是标准化的结果很小

Sklearn:封装好,建立模型简单,预测简单;但是算法过程不可见。
Tensorflow:封装高低都有,可以自己实现
正规方程—梯度下降的差别:
评估方法:
均方误差
API:


过拟合欠拟合
过拟合:特征较多,机器学习较多
欠拟合:特征较少,机器学习较少

模型复杂的原因:
数据的特征和目标值之间是复杂的非线性关系,不仅仅是线性关系
判断依据:
训练集训练结果很好、测试及表现较差—过拟合
训练集测试集结果都很好—欠拟合
解决方法:
①特征选择,消除关联性大的特征(较难做),交叉验证(让所有数据都有过训练),正则化(重点)
正则化:
更新权重过程当中,尽量减小高次项特征的影响
L2正则化:
回归问题解决过拟合的方式

Ridge:岭回归,
带有正则化项的线性回归,解决过拟合
API:


(alpha超参数,alpha越大,权重越来越小)


本文深入探讨了线性回归的基本概念及其应用,包括回归问题的判定、线性关系的表现形式、矩阵运算的应用、以及如何通过正规方程和梯度下降法求解最优权重。此外,还讨论了过拟合和欠拟合现象及其解决方案。


被折叠的 条评论
为什么被折叠?



