关于求定积分的反函数的导数【认清原函数x变量和反函数x变量】

如图碰到该题该怎么解?

在纸上按①②③的顺序写出这个,其中①是最主要的

第②步和第③步就是在用反函数时要用到的逻辑思维,不是一起用的,你需要用②才去用②,你需要用③才去用③


在纸上先写出第①步,即

其中,


第②步,

由步骤①的在它的上方写它的原函数,等于左边的反变量x(也就是反函数的变量x)


第③步,

由步骤①的在它的下方写它的原函数,等于右边的原变量y(也就是原函数的变量y)


故,这道题我是这么解的:


所以,我们在算这道题时要认清原函数的x变量和反函数的x变量:

题目的里的0是反函数的x变量

我们在运算中将原函数求导后得出的结果,里面的x还停留在原函数的x变量的阶段,

所以回过头来将里的0去等于原函数,逼出里面的原函数的x变量,将这个原函数的x变量代入 原函数求导后得出的结果,才是最终的答案。

  • 9
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
考研数学真题近十年考题路线分析(高数部分) httpwww.sooxue.com 2008-10-30 来源:海天教育   以下给出了《高等数学》每章近10年(1997-2006)的具体考题题型,可以使考生清晰地了解和把握各章出题的方式、命题的频率及其分值比重,在全面复习的过程中,也不失对重点知识的明确和强化。   高等数学   (①10年考题总数:117题 ②总分值:764分 ③占三部分题量之比重:53%④占三部分分值之比重:60%)   第一章 函数、极限、连续   (①10年考题总数:15题 ②总分值:69分 ③占第一部分题量之比重:12%④占第一部分分值之比重:9%)   题型 1 1∞型极限(一(1),2003)   题型 2 00型极限(一(1),1998;一(1),2006)   题型 3 ∞-∞型极限(一(1),1999)   题型 4 分段函数的极限(二(2),1999;三,2000)   题型 5 函数性质(奇偶性,周期性,单调性,有界性)的判断(二(1),1999;二(8),2004)   题型 6 无穷小的比较或确定无穷小的阶(二(7),2004)   题型 7 数列极限的判定或解(二(2),2003;六(1),1997;四,2002;三(16),2006)   题型 8 n项和的数列极限(七,1998)   题型 9 函数在某点连续性的判断(含分段函数)(二(2),1999)   第二章 一元函数微分学   (①10年考题总数:26题 ②总分值:136分 ③占第一部分题量之比重:22%④占第一部分分值之比重:17%)   题型 1 与函数导数或微分概念和性质相关的命题(二(7),2006)   题型 2 函数可导性及导函数的连续性的判定(五,1997;二(3),2001;二(7),2005)   题型 3 函数或复合函数的导数(七(1),2002)   题型 4 反函数导数(七(1),2003)   题型 5 隐函数的导数 (一(2),2002)   题型 6 函数极值点、拐点的判定或解(二(7),2003)   题型 7 函数与其导函数的图形关系或其他性质的判定(二(1),2001;二(3),2002)   题型 8 函数在某点可导的判断(含分段函数在分段点的可导性的判断)(二(2),1999)   题型 9 一元函数在一点的切线方程或法线方程(一(3),1997;四,2002;一(1),2004)   题型 10 函数单调性的判断或讨论(八(1),2003;二(8),2004)   题型11不等式的证明或判定(二(2),1997;九,1998;六,1999;二(1),2000;八(2),2003;三(15),2004)   题型12在某一区间至少存在一个点或两个不同的点使某个式子成立的证明(九,2000;七(1),2001;三(18),2005)   题型 13 方程根的判定或唯一性证明(三(18),2004)   题型 14 曲线的渐近线的解或判定(一(1),2005)   第三章 一元函数积分学   (①10年考题总数:12题 ②总分值:67分 ③占第一部分题量之比重:10%④占第一部分分值之比重:8%)   题型 1 定积分原函数(三,2001;一(2),2004)   题型 2 函数与其原函数性质的比较(二(8),2005)   题型 3 函数的定积分(二(3),1997;一(1),2000;三(17),2005)   题型4 变上限积分导数(一(2),1999;二(10),2004)   题型 5 广义积分(一(1),2002)
该数值分析软件(Numerical Analysis Software)实现了现代数值分析中的基本计算方法。主要包括线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值及特征向量的计算、插值法与最小二乘法曲线拟合、数值微积分、常微分方程的数值解法,有利于工程技术人员在实际中方便快捷地应用,也可在数值分析计算教学时进行演示,极大地提高其工作效率。软件采用了友好的输入输出方案允许用户按照一定格式输入的随意性,格式详见帮助文档;利用了一定的图形处理技术,直观地显示数据具体信息,通过良好的数学方法与计算机技术的结合,保障数据的可靠性。另外,还可以自定义小数数位和拟合曲线颜色。各部分简介如下: 线性方程组的数值解法: 在自然科学与工程技术中,很多问题的解决常常归结为解线性方程组,如电学中的网络问题,船体数学放样中的建立三次样条函数问题,机械和建筑结构的设计和计算等等。因此,如何利用电子计算机这一强有力的计算工具去解线性方程组,是一个非常重要的问题。线性方程组的解法分直接(解)法{是指在没有舍入误差的假设下,经过有限步运算即可得方程组的精确解的方法。}和迭代(解)法{是用某种极限过程去逐步逼近线性方程组精确解的方法,即是从一个初始向量x0出发,按照一定的迭代格式产生一个向量序列xk,使其收敛到方程组A*x=b的解}。该部分就是针对线性方程组解而设计的,内容包括:线性方程组的直接解法:Gauss消去法、Gauss列主元消去法、Gauss全主元消去法、列主元消去法应用『列主元逆矩阵、列主元行列式、矩阵的三角分解』、LU分解法、平方根法、改进的平方根法、追赶法(解三对角)、列主元三角分解法;线性方程组的迭代解法:雅可比迭代法、高斯-塞德尔迭代法、逐次超松驰迭代法;迭代法的收敛性『正定矩阵判断、向量范数、矩阵范数、严格对角站优矩阵判断』。 非线性方程的数值解法: 在科学研究与工程技术中常会遇到解非线性方程f(x)=0的问题。而方程f(x)是多项式或超越函数又分为代数方程或超越方程。对于不高于四次的代数方程已有根公式,而高于四次的代数方程则无精确的根公式,至于超越方程就更无法其精确解了。因此,如何得满足一定精度要的方程的近似根也就成为了广大科技工作者迫切需要解决的问题。该部分就是针对这一问题而设计的,内容包括:二分法、迭代法、迭代加速法、埃特金加速法、牛顿切线法、弦截法。 矩阵的特征值及特征向量的计算: 自然科学和工程技术中的许多问题,如振动问题(桥梁或建筑物的振动、机械振动、电磁振动等),物理学中某些临界值的满足等,常常归结为矩阵的特征值及特征向量。该部分就是针对这一问题而设计的,内容包括:幂法、原点平移法、反幂法、古典雅可比法、雅可比过关法。 插值法与最小二乘法曲线拟合: 在科学研究与工程技术中,常会遇到函数表达式过于复杂而不便于计算,且又需要计算众多点处的函数值;或只已知又实验或测量得到的某一函数y=f(x)在区间[a,b]中互异的n+1个x0,x1,……,xn处的值y0,y1,……,yn,需要构造一个简单函数P(x)作为函数y=f(x)的近似表达式y=f(x)≈P(x),使得P(xi)=f(xi)=yi,(i=0,1,……,n).这类问题就是插值问题,P(x)即称为插值函数。时至今日,随着电子计算机的普及,插值法的应用范围已涉及到了生产、科研、的各个领域。特别是由于航空、造船、精密机械加工等实际问题的需要,更使得插值法在实践与理论上显得尤其重要并得到了进一步发展,尤其是近几十年发展起来的样条(Spline)插值,更获得了广泛的应用。另外,在科学研究与工程技术中,常常需要从一组测量数据(xi,yi)(i=0,1,……,n)处发,寻找变量x与y的函数关系的近似表达式,且是从给定的一组实验数据出发,寻已知函数的一个逼近函数y=ρ(x),使得逼近函数从总体上来说与已知函数的偏差按某种方法度量能达到最小而又不一定过全部的点(xi,yi),即是最小二乘曲线拟合。该部分就是针对这些问题而设计的,内容包括:线性插值、抛物线插值、分段线性插值、分段线性插值、分段抛物线插值、拉格朗日插值多项式、牛顿插值多项式、等距节点插值多项式『牛顿前插公式、牛顿后插公式』、埃尔米特插值、三次样条插值『用节点处一阶导数表示的样条函数(给定两端点处的一阶导数值、给定两端点处的二阶导数值)、用节点处二阶导数表示的样条函数(给定两端点处的一阶导数值、给定两端点处的二阶导数值)』;最小二乘曲线拟合。 数值微积分: 实际问题中常常需要计算定积分。在微积分中,我们熟知,牛顿-莱布尼茨公式是计算定积分的一种有效工具,在理论和实际计算中有很大作用。但在工程计算和科学研究中,经常会遇到被积函数f(x)这样一些函数:(1)被积函数f(x)本身形式复杂,原函数更为困难。(2)被积函数f(x)的原函数不能用初等函数形式表示。(3)被积函数f(x)虽有初等函数形式表示的原函数,但其原函数表示形式相当复杂。(4)被积函数f(x)本身没有解析表达式,其函数关系由表格或图形给出;例如为实验或测量数据。这些情况都不能利用牛顿-莱布尼茨公式方便地计算该函数的定积分,满足不了实际需。因此,有必要研究定积分的数值计算问题;另外,对一些函数的导问题,其导、微分也相当复杂,也有必要研究导、微分的数值计算问题。该部分就是针对这些问题而设计的,内容包括:牛顿-柯特斯(Newton-Cotes)公式、复化积公式、高斯积公式、绘制一般函数的图形。 常微分方程的数值解法: 常微分方程的解问题在实践中经常遇到,但我们只知道一些特殊类型的常微分方程的解析解。在科学和工程问题中遇到的常微分方程的往往很复杂,在许多问题中,并不需要方程解的表达式,而仅仅需要获得解在若干点的就算解即可。因此,研究常微分方程的的数值解就很有必要。该部分就是针对这些而设计的,内容包括:欧拉(Euler)方法、龙格库塔(Runge-Kutta)方法、线性多步方法
蛋白质是生物体中普遍存在的一类重要生物大分子,由天然氨基酸通过肽键连接而成。它具有复杂的分子结构和特定的生物功能,是表达生物遗传性状的一类主要物质。 蛋白质的结构可分为四级:一级结构是组成蛋白质多肽链的线性氨基酸序列;二级结构是依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,主要为α螺旋和β折叠;三级结构是通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构;四级结构用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。 蛋白质在生物体内具有多种功能,包括提供能量、维持电解质平衡、信息交流、构成人的身体以及免疫等。例如,蛋白质分解可以为人体提供能量,每克蛋白质能产生4千卡的热能;血液里的蛋白质能帮助维持体内的酸碱平衡和血液的渗透压;蛋白质是组成人体器官组织的重要物质,可以修复受损的器官功能,以及维持细胞的生长和更新;蛋白质也是构成多种生理活性的物质,如免疫球蛋白,具有维持机体正常免疫功能的作用。 蛋白质的合成是指生物按照从脱氧核糖核酸(DNA)转录得到的信使核糖核酸(mRNA)上的遗传信息合成蛋白质的过程。这个过程包括氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放以及蛋白质合成后的加工修饰等步骤。 蛋白质降解是指食物中的蛋白质经过蛋白质降解酶的作用降解为多肽和氨基酸然后被人体吸收的过程。这个过程在细胞的生理活动中发挥着极其重要的作用,例如将蛋白质降解后成为小分子的氨基酸,并被循环利用;处理错误折叠的蛋白质以及多余组分,使之降解,以防机体产生错误应答。 总的来说,蛋白质是生物体内不可或缺的一类重要物质,对于维持生物体的正常生理功能具有至关重要的作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZYT_庄彦涛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值