Python实现NOA星雀优化算法优化Catboost回归模型项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后关注获取。

1.项目背景

 在当今数据驱动的时代,各行各业都在积极探索如何从海量的数据中提取有价值的信息,以支持决策制定和业务优化。特别是在金融、医疗、制造业等领域,回归分析作为一种重要的统计方法,被广泛应用于预测连续型变量的变化趋势。然而,随着数据量的急剧增加和数据复杂性的提升,传统的回归模型在处理高维稀疏数据时往往表现出局限性,难以达到理想的预测精度和稳定性。此外,选择合适的模型参数对于提高回归模型的性能至关重要,但手动调参不仅耗时费力,而且难以找到全局最优解。因此,开发一种高效的自动化参数优化方法成为解决这一问题的关键。

为了应对上述挑战,本项目将采用NOA(Nova Optimization Algorithm)星雀优化算法来优化Catboost回归模型的超参数。NOA是一种基于自然界生物行为模仿设计的新型元启发式优化算法,通过模拟星雀群的觅食行为进行全局搜索,能够在复杂的解空间中高效地寻找最优解。相比传统的优化算法,NOA具有更强的全局探索能力和更快的收敛速度,特别适用于处理高维复杂问题。Catboost作为一种先进的梯度提升决策树模型,因其对类别特征的强大处理能力和出色的泛化性能,在工业界得到了广泛应用。然而,Catboost模型的效果高度依赖于其超参数的选择,而这些参数通常需要通过大量实验来调整,这使得利用高效的优化算法自动调优显得尤为重要。

本项目的总体目标是开发一套基于Python语言实现的能够自动化地运用NOA星雀优化算法对Catboost回归模型进行超参数调优,从而显著提升模型的预测性能和鲁棒性。具体而言,我们将通过对多个真实世界数据集的应用测试,验证这一组合策略的有效性和优越性,并评估其在不同应用场景下的表现。此外,本研究不仅有助于深入理解NOA算法在实际应用中的价值,同时也为相关领域的研究人员提供了一种新的技术手段,推动机器学习技术的发展及其在实际业务场景中的应用。通过本项目的实施,我们期望为各行业提供一种高效、可靠的解决方案,助力企业在激烈的市场竞争中取得优势。   

本项目通过Python实现NOA星雀优化算法优化Catboost回归模型项目实战。          

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码: 

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:  

4.探索性数据分析

4.1 y变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。  

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下: 

6.构建NOA星雀优化算法优化Catboost回归模型   

主要使用通过NOA星雀优化算法优化Catboost回归模型,用于目标回归。        

6.1 NOA星雀优化算法寻找最优参数值  

最优参数值: 

   

6.2 最优参数构建模型 

编号

模型名称

参数

1

Catboost回归模型    

iterations=best_iterations

2

depth=best_depth

3

learning_rate=best_learning_rate

7.模型评估

7.1评估指标及结果  

评估指标主要包括R方、均方误差、解释性方差、绝对误差等等。

模型名称

指标名称

指标值

测试集

Catboost回归模型    

R方

0.9341

均方误差

1784.7274

解释方差分

0.9345

绝对误差

28.6776

从上表可以看出,R方分值为0.9341,说明模型效果良好。    

关键代码如下:     

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型效果良好。       

8.结论与展望

综上所述,本文采用了Python实现NOA星雀优化算法优化Catboost回归算法来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张陈亚

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值