说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后关注获取。
1.项目背景
在当今数据驱动的时代,各行各业都在积极探索如何从海量的数据中提取有价值的信息,以支持决策制定和业务优化。特别是在金融、医疗、制造业等领域,回归分析作为一种重要的统计方法,被广泛应用于预测连续型变量的变化趋势。然而,随着数据量的急剧增加和数据复杂性的提升,传统的回归模型在处理高维稀疏数据时往往表现出局限性,难以达到理想的预测精度和稳定性。此外,选择合适的模型参数对于提高回归模型的性能至关重要,但手动调参不仅耗时费力,而且难以找到全局最优解。因此,开发一种高效的自动化参数优化方法成为解决这一问题的关键。
为了应对上述挑战,本项目将采用NOA(Nova Optimization Algorithm)星雀优化算法来优化Catboost回归模型的超参数。NOA是一种基于自然界生物行为模仿设计的新型元启发式优化算法,通过模拟星雀群的觅食行为进行全局搜索,能够在复杂的解空间中高效地寻找最优解。相比传统的优化算法,NOA具有更强的全局探索能力和更快的收敛速度,特别适用于处理高维复杂问题。Catboost作为一种先进的梯度提升决策树模型,因其对类别特征的强大处理能力和出色的泛化性能,在工业界得到了广泛应用。然而,Catboost模型的效果高度依赖于其超参数的选择,而这些参数通常需要通过大量实验来调整,这使得利用高效的优化算法自动调优显得尤为重要。
本项目的总体目标是开发一套基于Python语言实现的能够自动化地运用NOA星雀优化算法对Catboost回归模型进行超参数调优,从而显著提升模型的预测性能和鲁棒性。具体而言,我们将通过对多个真实世界数据集的应用测试,验证这一组合策略的有效性和优越性,并评估其在不同应用场景下的表现。此外,本研究不仅有助于深入理解NOA算法在实际应用中的价值,同时也为相关领域的研究人员提供了一种新的技术手段,推动机器学习技术的发展及其在实际业务场景中的应用。通过本项目的实施,我们期望为各行业提供一种高效、可靠的解决方案,助力企业在激烈的市场竞争中取得优势。
本项目通过Python实现NOA星雀优化算法优化Catboost回归模型项目实战。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
编号 | 变量名称 | 描述 |
1 | x1 | |
2 | x2 | |
3 | x3 | |
4 | x4 | |
5 | x5 | |
6 | x6 | |
7 | x7 | |
8 | x8 | |
9 | x9 | |
10 | x10 | |
11 | y | 因变量 |
数据详情如下(部分展示):
3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:
关键代码:
3.2数据缺失查看
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。
关键代码:
3.3数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。
关键代码如下:
4.探索性数据分析
4.1 y变量分布直方图
用Matplotlib工具的hist()方法绘制直方图:
4.2 相关性分析
从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:
5.2 数据集拆分
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:
6.构建NOA星雀优化算法优化Catboost回归模型
主要使用通过NOA星雀优化算法优化Catboost回归模型,用于目标回归。
6.1 NOA星雀优化算法寻找最优参数值
最优参数值:
6.2 最优参数构建模型
编号 | 模型名称 | 参数 |
1 | Catboost回归模型 | iterations=best_iterations |
2 | depth=best_depth | |
3 | learning_rate=best_learning_rate |
7.模型评估
7.1评估指标及结果
评估指标主要包括R方、均方误差、解释性方差、绝对误差等等。
模型名称 | 指标名称 | 指标值 |
测试集 | ||
Catboost回归模型 | R方 | 0.9341 |
均方误差 | 1784.7274 | |
解释方差分 | 0.9345 | |
绝对误差 | 28.6776 |
从上表可以看出,R方分值为0.9341,说明模型效果良好。
关键代码如下:
7.2 真实值与预测值对比图
从上图可以看出真实值和预测值波动基本一致,模型效果良好。
8.结论与展望
综上所述,本文采用了Python实现NOA星雀优化算法优化Catboost回归算法来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。