bcaktrader策略编写1

1 Backtrader策略类编写说明

在上一篇,我大体记录了整个backtrader整体最简流程,策略类中没有实现任何买卖逻辑,只是单纯的打印了每日的收盘价。今天,我将详细介绍策略编写类的构建过程,并构建一个简单的均线策略。
策略逻辑如下:

  • 收盘价高于平均价的时候,以市价买入
  • 持有仓位的时候,如果收盘价低于平均价,卖出
  • 只有一个待执行的订单

以下是上一篇文章的代码,我们在此基础上增加新的内容。

# 1. 创建策略继承bt.Strategy 
class TestStrategy(bt.Strategy): 

    def log(self, txt, dt=None): 
        # 记录策略的执行日志  
        dt = dt or self.datas[0].datetime.date(0) 
        print('%s, %s' % (dt.isoformat(), txt)) 

    def __init__(self): 
        # 保存收盘价的引用  
        self.dataclose = self.datas[0].close 

    def next(self): 
        # 记录收盘价  
        self.log('Close, %.2f' % self.dataclose[0]) 

策略类函数解释:

  1. log函数:用于在策略类中打印日志,日志直接带日期
  2. __init__函数:该函数用于初始化一些我们需要的全局变量
  3. next:这个函数是策略类最核心的函数,所有的策略逻辑都将在这个函数中实现。

在next中增加买入卖出逻辑

  • 买入逻辑:股价三连跌
  • 卖出逻辑:股价三连涨
def next(self):
        # 记录收盘价  
        self.log('Close, %.2f' % self.dataclose[0]) 

        # 今天的收盘价 < 昨天收盘价  
        if self.dataclose[0] < self.dataclose[-1]: 
            # 昨天收盘价 < 前天的收盘价  
            if self.dataclose[-1] < self.dataclose[-2]:
                # 买入  
                self.log('买入, %.2f' % self.dataclose[0])
                self.buy()
                
        # 今天的收盘价 > 昨天收盘价  
        if self.dataclose[0] > self.dataclose[-1]: 
            # 昨天收盘价 < 前天的收盘价  
            if self.dataclose[-1] > self.dataclose[-2]:
                # 买入  
                self.log('卖出, %.2f' % self.dataclose[0])
                self.sell() 

将该next函数替换为上一个教程中的next即可。

为了可以看到策略运行结束后的交易情况,我们可以在最后增加一行代码,实现绘图。

cerebro.plot(style='bar')

完整的程序如下

import datetime
import os.path
import sys
# 0. 导入backtrader框架  
import backtrader as bt 

class TestStrategy(bt.Strategy): 
    def log(self, txt, dt=None): 
        # 记录策略的执行日志  
        dt = dt or self.datas[0].datetime.date(0) 
        print('%s, %s' % (dt.isoformat(), txt))

    def __init__(self): 
        # 保存收盘价的引用  
        self.dataclose = self.datas[0].close

    def next(self):
        # 记录收盘价  
        self.log('Close, %.2f' % self.dataclose[0]) 

        # 今天的收盘价 < 昨天收盘价  
        if self.dataclose[0] < self.dataclose[-1]: 
            # 昨天收盘价 < 前天的收盘价  
            if self.dataclose[-1] < self.dataclose[-2]:
                # 买入  
                self.log('买入, %.2f' % self.dataclose[0])
                self.buy()
                
        # 今天的收盘价 > 昨天收盘价  
        if self.dataclose[0] > self.dataclose[-1]: 
            # 昨天收盘价 < 前天的收盘价  
            if self.dataclose[-1] > self.dataclose[-2]:
                # 买入  
                self.log('卖出, %.2f' % self.dataclose[0])
                self.sell()
        
# 2. 创建Cerebro引擎  
cerebro = bt.Cerebro()  # Cerebro引擎在后台创建broker(经纪人),系统默认资金量为10000 

# 3. 为Cerebro引擎添加策略  
cerebro.addstrategy(TestStrategy) 

# 4. 创建交易数据集  
data = bt.feeds.GenericCSVData(
    dataname='159605.SZ.csv',
    dtformat='%Y%m%d',  # 日期时间格式
    datetime=0,      # 日期时间所在列,假设为第一列
    open=2,          # 开盘价所在列,假设为第三列
    high=3,          # 最高价所在列,假设为第四列
    low=4,           # 最低价所在列,假设为第五列
    close=5,         # 收盘价所在列,假设为第六列
    volume=6,        # 成交量所在列,假设为第七列
    openinterest=-1,  # 无未平仓量列
    fromdate=datetime.datetime(2022, 1, 19),  # 起始日期
    todate=datetime.datetime(2024, 4, 19)     # 结束日期
)

# 5. 为Cerebro引擎添加数据
cerebro.adddata(data)  

# 运行cerebro引擎  
print('组合期初资金: %.2f' % cerebro.broker.getvalue()) 
cerebro.run() 
# 引擎运行后打期末资金  
print('组合期末资金: %.2f' % cerebro.broker.getvalue())

cerebro.plot(style='bar')

该策略执行后的结果


期初期末资金基本上不赚不赔,说明这个简单的策略没啥用。不过在backtrader中编写策略的方式了解了一些,后续可以慢慢修改。

结语

这次虽然在策略类的next中简单编写了一个买卖逻辑,但是next中还有很多其他函数,对于实现一些基础的逻辑至关重要,我们后续再讨论。

除此之外

除此之外,以下百度云链接是我整理的backtrader学习资料,对于入门backtrader非常有效。包含了扫地僧backtrader系列一的完整pdf和课程视频,有兴趣的可以看下,其包含了完整的backtrade学习内容,需要一杯咖啡钱。
在这里插入图片描述

请使用支付宝扫码
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大蠢驴小疯子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值